
Field-wise Embedding Size Search via Structural Hard
Auxiliary Mask Pruning for Click-Through Rate Prediction
Tesi Xiao1, Xia Xiao2, Ming Chen2 and Youlong Cheng2,*

1University of California, Davis, USA
2ByteDance, Mountain View, USA

Abstract
Feature embeddings are one of the most important steps when training deep learning based Click-Through Rate prediction
models, which map high-dimensional sparse features to dense embedding vectors. Classic human-crafted embedding size
selection methods are shown to be “sub-optimal" in terms of the trade-off between memory usage and model capacity. The
trending methods in Neural Architecture Search (NAS) have demonstrated their efficiency to search for embedding sizes.
However, most existing NAS-based approaches suffer from expensive computational costs, the curse of dimensionality of
the search space, and the discrepancy between continuous search space and discrete candidate space. Other methods that
prune embeddings in an unstructured manner fail to explicitly reduce the computational costs. In this paper, to address those
limitations, we propose a novel strategy that searches for the optimal mixed-dimension embedding scheme by structurally
pruning a super-net via Hard Auxiliary Mask. Our method aims to directly search candidate models in the discrete space
using a simple and efficient gradient-based method. Furthermore, we introduce orthogonal regularity on embedding tables to
reduce correlations within embedding columns and enhance representation capacity. Extensive experiments demonstrate it
can effectively remove redundant embedding dimensions without great performance loss.

Keywords
CTR Prediction, Embedding Size, Network Pruning, Neural Architecture Search

1. Introduction
Deep learning based recommender systems (DLRS) have
demonstrated superior performance over more tradi-
tional recommendation techniques [3]. The success of
DLRS is mainly attributed to their ability to learn mean-
ingful representations with categorical features, that sub-
sequently help with modeling the non-linear user-item
relationships efficiently. Indeed, real-world recommenda-
tion tasks usually involve a large number of categorical
feature fields with high cardinality (i.e. the number of
unique values or vocabulary size) [4]. One-Hot Encoding
is a standard way to represent such categorical features.
To reduce the memory cost of One-Hot Encoding, DLRS
first maps the high-dimensional one-hot vectors into
real-valued dense vectors via the embedding layer. Such
embedded vectors are subsequently used in predictive
models for obtaining the required recommendations.

In this pipeline, the choice of the dimension of the
embedding vectors, also known as embedding dimension,
plays a crucial role in the overall performance of the
DLRS. Most existing models assign a fixed and uniform

DL4SR’22: Workshop on Deep Learning for Search and Recommen-
dation, co-located with the 31st ACM International Conference on
Information and Knowledge Management (CIKM), October 17-21, 2022,
Atlanta, USA
*Corresponding author.
$ texiao@ucdavis.edu (T. Xiao); x.xiaxiao@bytedance.com
(X. Xiao); ming.chen@bytedance.com (M. Chen);
youlong.chen@bytedance.com (Y. Cheng)

© 2022 Copyright for this paper by its authors. Use permitted under Creative Commons License
Attribution 4.0 International (CC BY 4.0).

CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

embedding dimension for all features, either due to the
prerequisites of the model input or simply for the sake
of convenience. If the embedding dimensions are uni-
formly high, it leads to increased memory usage and
computational cost, as it fails to handle the heterogeneity
among different features. As a concrete example, encod-
ing features with few unique values like gender with large
embedding vectors leads to over-parametrization. Con-
versely, the selected embedding size may be insufficient
for highly-predictive features with large cardinalities,
such as the user’s last search query. Therefore, finding
appropriate embedding dimensions for different feature
fields is essential.

The existing works towards automating embedding
size search can be categorized into two groups: (i) field-
wise search [5, 2, 6]; (ii) vocabulary-wise search [7, 8, 9, 10].
The former group aims to assign different embedding
sizes to different feature fields, while embeddings in the
same feature field share the same dimension. The lat-
ter further attempts to find different embedding sizes
to different feature values within the same feature field,
which is generally based on the frequencies of feature
values. Although it has been shown that the latter group
can significantly reduce the model size without a great
performance drop, the second group of works suffers
from several challenges and drawbacks (we refer readers
to Section 3.4 in [2] for details): (a) a large number of
unique values in each feature field leads to a huge search
space in which the optimal solution is difficult to find;
(b) the feature values frequencies are time-varying and

mailto:texiao@ucdavis.edu
mailto:x.xiaxiao@bytedance.com
mailto:ming.chen@bytedance.com
mailto:youlong.chen@bytedance.com
https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org

-0.20.3-0.6 0.1211.2 -0.9

Field 1 Field 𝑗 Field 𝐾

V!Embedding Table
-0.20.3-0.6 0.12

0.50.20.1 -0.4

0.1-10.2 -0.6

-0.30.7-0.5 0.2

01 1Hard Auxiliary Mask 101 1

0.30.1 -2.1

10 1

⊙

Interaction Layers

!𝑦

Embedding Vector

-0.911.2

0.70.20.3

-0.3-0.20.4

-0.80.1-0.2

-0.11.2 0.1

0.60.7 -0.4

0.2-1 -0.1

0.30.1 -2.1

⊙ ⊙

V" V#
+

Linear Transform / Zero Padding

Embedding Lookup
with Memory Sharing

Batch Norm + Weighted Sum

Output
Embedding

Vector

AutoDim [Zhao et al., 2020]

Gumbel-softmax

DNIS [Cheng et al., 2020]

-0.20.3-0.6 0.12

0.90.10.6 0.8

⊙
Soft Auxiliary Mask

Embedding Vector

-0.180.03-0.36 0.96

Output
Embedding

Vector

Our Framework

Magnitude-based Pruning

Embedding
Look-up

Figure 1: (left) The framework of our method. The operator ⊙ denotes the element-wise product. The gray embedding
components are masked and thus can be removed directly. (right) The basic ideas of DNIS [1] and AutoDim [2].

not pre-known in real-time recommender system; (c) it is
difficult to handle embeddings with different dimensions
for the same feature field in the state of art DLRS due to
the feature crossing mechanism. As a result, we fix our
attention to the field-wise embedding size search in this
work.

The majority of recent works towards automating em-
bedding size search are based on the trending ideas in
Neural Architecture Search (NAS). NAS has been an ac-
tive research area recently, which is composed of three
elements: (i) a search space 𝒜 of all candidate models;
(ii) a search strategy that goes through models in 𝒜; (iii)
a performance estimation strategy that evaluates the per-
formance of the selected model. To leverage the NAS
techniques to search embedding sizes for each feature
field, Joglekar et al. [7] formulate the search space by dis-
cretizing an embedding matrix into several sub-matrices
and take a Reinforcement Learning (RL) approach with
the Trainer-Controller framework for search and per-
formance estimation, in which the controller samples
different embedding blocks to maximize the reward ob-
served from the trainer that trains the model with the
controller’s choices. Liu et al. [6] also adopt the RL-based
search which starts with small embedding sizes and takes
actions to keep or enlarge the size based on the predic-
tion error. Their proposed method requires sequentially
training DRLS and the policy network repeatedly until
convergence, which is computationally expensive.

Given the rise of one-shot NAS aiming to search
and evaluate candidate models together in an over-
parametrized supernet, Zhao et al. [5, 2] follow the idea
of Differential Neural Architecture Search (DARTS)[11]
and solve a continuous bilevel optimization by the
gradient-based algorithm. To be specific, they define
a search space that includes all possible embedding sizes
of each feature field; for instance in [2], 5 candidate
sizes {2, 8, 16, 24, 32} are selected for each feature field.
These embedding vectors in different sizes are then lifted

into the same dimension with batch normalization so
that they can be aggregated with architecture weights
of candidate sizes and fed into the subsequent layers to
obtain the prediction. Cheng et al. [1] also leverage the
idea of DARTS but with the architecture weights being
the weights of sub-blocks of embedding matrices.

Despite the obtained promising results, the existing
methods have certain limitations which arise from the
discrepancy between the large discrete candidate space
and its continuous relaxation. On the one hand, the
DARTS-based methods in [5, 2, 1] are algorithmically
efficient but search in an augmented continuous space;
it has been shown that the discrepancy may lead to
finding unsatisfactory candidates because the magnitude
of architecture weights does not necessarily indicate
how much the operation contributes to the overall
performance [12]. On the other hand, while the RL-based
methods in [7, 6] and the hard selection variant in [5]
directly search and evaluate models in the original
discrete candidate space, they are computationally heavy
and thus not favored by the large-scale DLRS. Therefore,
a natural question follows:

Is it possible to come up with an efficient method that
searches straight through the discrete candidate space of
all possible embedding sizes?

In this work, we provide a positive answer by propos-
ing an end-to-end field-aware embedding size search
method leveraging the Straight Through Estimator (STE)
of gradients for non-differentiable functions. Motivated
by one-shot NAS and network pruning, our method seeks
to adaptively search for a good sub-network in a pre-
trained supernet by masking redundant dimensions. The
mask, named as Hard Auxiliary Mask (HAM), is real-
ized by the indicator function of auxiliary weights. Fur-
thermore, to reduce the information redundancy and
boost the search performance, we impose the orthogonal

regularity on embedding tables and train models with
regularized loss functions. Contributions and nov-
elty of our work are: (i) we propose to prune embed-
ding tables column-wisely via hard auxiliary masks for
the CTR prediction models, which can effectively com-
press the model; (ii) we offer a gradient-based pruning
method and delve into its dynamics with mathematical
insights; (iii) we introduce orthogonal regularity for train-
ing recommendation models and experimentally show
that orthogonal regularity can help to achieve significant
improvement; (iv) we obtain state-of-the-art results on
various modern models and our method is scalable on
large datasets.

2. Related Work
Embedding Size Search for Recommender Systems.
To deal with the heterogeneity among different features
and reduce the memory cost of sizable embedding tables,
several recent works introduce a new paradigm of mixed-
dimension embedding tables. In particular, Ginart et al.
[10] propose to substitute the uniform-dimension embed-
dings V ∈ R𝐶×𝑑 with V = EP, where E ∈ R𝐶×𝑠 is
the smaller embeddings with 𝑠≪ 𝑑 and P ∈ R𝑠×𝑑 is the
projection that lift the embeddings into the base dimen-
sion 𝑑 for feature crossing purposes. A popularity-based
rule is further designed to find the dimension 𝑠 for each
feature field which is too rough and cannot handle impor-
tant features with low frequency. In addition, plenty of
works seek to provide an end-to-end framework leverag-
ing the advances in NAS, including RL approaches [7, 6]
and differentiable NAS methods [5, 13, 2, 1]. The most
relevant work to us is [1], which employs a soft auxiliary
mask to prune the embeddings structurally. However, it
requires magnitude-based pruning to derive fine-grained
mixed embedding, in which the discrepancy between the
continuous relaxed search space and discrete candidate
space could lead to a relatively great loss in performance.
The most recent work [14] proposes a Plug-in Embed-
ding Pruning (PEP) approach to prune embedding tables
into sparse matrices to reduce storage costs, Albeit sig-
nificantly reducing the number of non-zero embedding
parameters, this type of unstructured pruning method
fails to explicitly reduce the embedding size.

Neural Network Pruning via Auxiliary Masks. To
deploy deep learning models on resource-limited devices,
there is no lack of work in neural network pruning; see
[15] and the reference therein. One popular approach
towards solving this problem is to learn a pruning mask
through auxiliary parameters, which considers pruning
as an optimization problem that tends to minimize the
supervised loss of the masked neural network with a
certain sparsity constraint. As learning the optimal mask
is indeed a discrete optimization problem for binary in-

puts, existing works attempt to cast it into a differentiable
problem and provide gradient-based search algorithms. A
straightforward method is to directly replace binary val-
ues by smooth functions of auxiliary parameters during
the forward pass, such as sigmoid [16], Gumbel-sigmoid
[17], softmax [11], Gumbel-softmax [18], and piece-wise
linear [19]. However, all these methods, which we name
Soft Auxiliary Mask (SAM), suffer from the discrepancy
caused by continuous relaxation. Other methods, which
we refer to Hard Auxiliary Mask (HAM), preserve binary
values in the forward pass with indicator functions [20]
or Bernoulli random variables [21] and optimize parame-
ters using the straight-through estimator (STE) [22, 23].
A detailed comparison of four representative auxiliary
masking methods for approximating binary values is pro-
vided in Table 1.

3. Methodology

3.1. Preliminaries
Here we briefly introduce the mechanism of DLRS and
define the terms used throughout the paper.
Model Architecture. Consider the data input

involves 𝐾 features fields from users, items, their
interactions, and contextual information. We de-
note these raw features by multiple one-hot vectors
x1 ∈ R𝐶1 , . . . ,x𝐾 ∈ R𝐶𝐾 , where field dimensions
𝐶1, . . . 𝐶𝐾 are the cardinalities of feature fields1. Ar-
chitectures of DLRS often consist of three key com-
ponents: (i) embedding layers with tables V1 ∈
R𝐶1×𝑑1 , . . . ,V𝐾 ∈ R𝐶𝐾×𝑑𝐾 that map sparse one-hot
vectors to dense vectors in a low dimensional embedding
space by v𝑖 = V⊤

𝑖 x𝑖; (ii) feature interaction layers that
model complex feature crossing using embedding vec-
tors; (iii) output layers that make final predictions for
specific recommendation tasks.

The feature crossing techniques of existing models
fall into two types - vector-wise and bit-wise. Models
with vector-wise crossing explicitly introduce interac-
tions by the inner product, such as Factorization Machine
(FM) [26], DeepFM [27] and AutoInt [28]. The bit-wise
crossing, in contrast, implicitly adds interaction terms
by element-wise operations, such as the outer product
in Deep Cross Network (DCN) [29], and the Hadamard
product in NFM [30] and DCN-V2 [31]. In this work, we
deploy our framework to the Click-Through Rate (CTR)
prediction problem with four base models: FM, DeepFM,
AutoInt, and DCN-V2.

Notations. Throughout this paper, we use ⊙ for
the Hadamard (element-wise) product of two vectors.
The indicator function of a scalar-valued 𝛼 is defined
as 1𝛼>0 = 1 if 𝛼 > 0;1𝛼>0 = 0 if 𝛼 ≤ 0. The

1Numeric features are converted into categorical data by binning.

Table 1
A List of Representative Auxiliary Masking Methods

Mask Forward Backward Modeleval = Modelsel

Soft
Deterministic 𝛼 ∈ [0, 1][1]; Sigmoid(𝛼), 𝛼 ∈ R[16] autograd ✗

Stochastic
Sigmoid(log𝛼+ log(𝑢

1−𝑢
)) [17],

𝛼 ∈ R, 𝑢 ∼ Uniform(0,1)
autograd ✗

Hard
Stochastic Bernoulli(p) STE [24], Gumbel-STE [21] ✗

Deterministic 1𝛼>0 STE [20, 25] (Our Approach) ✓

Remark. Modeleval stands for the evaluated masked model; Modelsel is the final model selected by the algorithm.

indicator function of a vector 𝛼 ∈ R𝑑 is defined as
1𝛼>0 = [1𝛼1>0, . . . ,1𝛼𝑑>0]

⊤. The identity matrix is
written as I and the function diag(·) returns a diagonal
matrix with its diagonal entries as the input. We use
‖ · ‖1, ‖ · ‖𝐹 for the ℓ1 norm of vectors and the Frobenius
norm of matrices respectively.

3.2. Background
In general, the CTR prediction models takes the concate-
nation of all feature fields from a user-item pair, denoted
by x = [x1;x2; . . . ;x𝐾] as the input vector. Given the
embedding layer V = {V1,V2, . . . ,V𝐾}, the feature
interaction layers take the embedding vectors v and feed
the learned hidden states into the output layer to obtain
the prediction. The embedding vectors v are the dense
encoding of the one-hot input x that can be defined as
follows:

v = [v1;v2; . . . ;v𝐾]

=
[︁
V⊤

1 x1;V
⊤
2 x2; . . . ;V

⊤
𝐾x𝐾

]︁
:= 𝒱x,

where 𝒱 is the embedding lookup operator. The predic-
tion score 𝑦 is then calculated with models’ other param-
eters Θ in the feature interaction layers and output layer
by 𝑦 = 𝜓(v|Θ) = 𝜓(𝒱x|Θ) = 𝜑(x|V,Θ), where
𝑦 ∈ [0, 1] is the predicted probability, 𝜓(·|Θ) is the pre-
diction function of embedding vectors, and 𝜑 = 𝜓 ∘ 𝒱 is
the prediction function of raw inputs. To learn the model
parameters V,Θ, we aim to minimize the Log-loss on
the training data, i.e.,

min
V,Θ

ℒtrain(V,Θ)

:= − 1

𝑁

𝑁∑︁
𝑗=1

[︀
𝑦𝑗 log(𝑦𝑗) + (1− 𝑦𝑗) log(1− 𝑦𝑗)

]︀
where 𝑁 is the total number of training samples.

Hard Auxiliary Mask As illustrated in Figure 1, we
add auxiliary masks for each embedding dimension slot.
Specifically, the auxiliary masks are indicator functions
of auxiliary parameters 𝛼 = [𝛼1;𝛼2; . . . ;𝛼𝐾], where
𝛼𝑖 ∈ R𝑑𝑖 is in the same size of the corresponding embed-
ding vector v𝑖. Provided with the masks, the predicted

probability score 𝑦 is given as follows:

𝑦 = 𝜓(v ⊙ 1𝛼>0|Θ) = 𝜑(x|Ṽ𝛼,Θ) = 𝜑(x|𝛼,V,Θ),

where Ṽ𝛼 = {Ṽ𝛼1

1 , . . . , Ṽ
𝛼𝐾
𝐾 } is the pruned embed-

ding layer with

Ṽ
𝛼𝑖
𝑖 = V𝑖 diag(1𝛼𝑖>0), 𝑖 = 1, . . .𝐾.

We emphasize that embedding tables Ṽ
𝛼𝑖
𝑖 are pruned

column-wisely in a structural manner unlike PEP [14]
that prunes entry-wisely.
Orthogonal Regularity Given the embedding table

V𝑗 ∈ R𝐶𝑗×𝑑𝑗 for feature field 𝑗, its column vectors, de-
noted by V𝑗,1, . . . ,V𝑗,𝑑𝑗 ∈ R𝐶𝑗 , can be regarded as 𝑑𝑗
different representations of feature 𝑗 in the embedding
space. The auxiliary masks above aim to mask relatively
uninformative column vectors so as to reduce the model
size. Nonetheless, the presence of correlation between
these vectors may complicate the selection procedure.
Specifically, presuming that the most predictive one V𝑗,𝑝

has been selected, it would be problematic if we greedily
select the next column V𝑗,𝑞 that brings the largest loss
drop when included in. For instance, if V𝑗,𝑞 ̸⊥ V𝑗,𝑝,
we have the following decomposition: V𝑗,𝑞 = p+ p⊥,
where p = 𝑐V𝑗,𝑝 ‖ V𝑗,𝑝 and p⊥ ⊥ p. Therefore, it
would be difficult to determine whether the increments
are attributed to the existing direction p or the new fac-
tor p⊥. To address this issue, we follow [32] to train
embedding parameters V with Soft Orthogonal (SO) reg-
ularizations:

ℛ(V) =
𝐾∑︁

𝑗=1

‖V⊤
𝑗 V𝑗 − I‖2𝐹 /𝑑2𝑗 , (1)

where divisors 𝑑2𝑗 are introduced to handle heteroge-
neous dimensionality of embedding tables. We also adopt
a relaxed SO regularization in which V𝑗 replaced by the
normalized matrix V𝑗 with unit column vectors, which
corresponds to the pair-wise cosine similarities within
embedding columns [33].

3.3. Framework
Our proposed framework is motivated by one-shot NAS,
which consists of three stages: pretrain, search, and re-
train.

Pretrain. As shown in [34], pre-training architecture
representations improve the downstream architecture
search efficiency. Therefore, in the pretraining stage, we
train the base model with a large embedding layer V.
The base dimension 𝑑𝑗 for each feature field is deter-
mined by prior knowledge. In addition, the embedding
dimension 𝑑𝑗 should not exceed the field dimension 𝐶𝑗

to avoid column-rank-deficiency. The SO regularization
term (1) is added to the mini-batch training loss for the
optimizer to learn near-orthogonal embeddings. The
learned model parameters, denoted by Vinit,Θinit, are
passed to the search stage as initialization.

Search. Provided with the pre-trained model, the goal
of the search stage is to find the column-wise sparse
embedding layer that preserves model accuracy, which
can be formulated as:

min
𝛼

min
V,Θ

ℒtrain

(︁
Ṽ𝛼,Θ

)︁
+ 𝜇

⃒⃒
‖1𝛼>0‖1 − 𝑠

⃒⃒
,

where ‖1𝛼>0‖1 counts the number of non-zero embed-
ding columns and 𝑠 is the target number of non-zero
columns. Note that instead of direct regularization on
‖1𝛼>0‖1 as [16, 20, 25] do, we include the target num-
ber 𝑠 to reduce instability from batched training and the
choice of hyperparameter 𝜇. However, given that the ob-
jective function above is non-differentiable when 𝛼 = 0
and has a zero gradient anywhere else, traditional gra-
dient descent methods are not applicable. To that end,
we use the straight-through estimator (STE) [22], which
replaces the ill-defined gradient in the chain rule with a
fake gradient. Despite various smooth alternatives used
in the literature, such as sigmoid [16] and piecewise poly-
nomials [35], we adopt the simplest identity function for
backpropagation, i.e.,

𝜕ℒ
𝜕𝛼

=
𝜕ℒ

𝜕1𝛼>0

𝜕1𝛼>0

𝜕𝛼
≈ 𝜕ℒ
𝜕1𝛼>0

𝜕𝛼

𝜕𝛼
=

𝜕ℒ
𝜕1𝛼>0

. (2)

Then, the search stage starts with the unmasked model
that 𝛼0 = 𝜖 · 1⃗ for some small 𝜖 > 0. The gradient
update rules for 𝛼 at iteration 𝑡 are given by:

𝛼𝑡+1 = 𝛼𝑡−𝜂·∇(1𝛼𝑡>0)ℒbatch−𝜇·sign(‖1𝛼𝑡>0‖1−𝑠)1⃗,
(3)

where 𝜂 is the learning rate. We will illustrate in Sec-
tion 3.4 that the above updates enjoy certain benefits
and the last term plays an important role by pushing
the optimizer iteratively to evaluate candidate models
with a hard auxiliary mask. Furthermore, to enhance the
stability and performance, we implement a multi-step
training through iteratively training auxiliary parameters
on validation data and retraining the original weights,
which attempts to solve the following bi-level optimiza-
tion problem:

min
𝛼

ℒval

(︁
Ṽ⋆

𝛼,Θ
⋆
)︁
+ 𝜇

⃒⃒
‖1𝛼>0‖1 − 𝑠

⃒⃒
s.t. Ṽ⋆

𝛼,Θ
⋆ = argmin

Ṽ𝛼,Θ

ℒtrain

(︁
Ṽ𝛼,Θ

)︁
.

Early Stopper for the Search Stage. We can deter-
mine to stop the search stage if the number of positive
auxiliary weights is close to the target size with no signif-
icant gain in validation AUC since the sign of auxiliary
weights exactly indicates whether the corresponding em-
bedding components are pruned or not. On the contrary,
it is hard to deploy the early stopper for the search stage
using other auxiliary mask pruning methods because the
value of validation AUC during the search epochs is un-
able to represent the performance of the model selected
in the retraining stage.

Retrain. After training {𝛼,V,Θ} for several epochs
in the search step, we obtain a binary mask based on
the sign of 𝛼 and continue optimizing {V,Θ} till con-
vergence. The early stopper is deployed for both pre-
training and retraining steps, which terminates training
if model performance on validation data cannot be im-
proved within a few epochs. The overall framework is
described in Algorithm 1.

Algorithm 1: Structural HAM Pruning
Input: data 𝒟train,𝒟val,𝒟test,
base dimensions 𝑑𝑗(≤ 𝐶𝑗) for each field 𝑗,
target embedding size 𝑠, hyperparameters
𝜇, 𝜖 > 0;
◁ Pretrain:
while stopping criteria not met do

obtain a batch of samples from 𝒟train and
update V,Θ regularized with SO (1) by
certain optimizer;

end
◁ Search: initialize 𝛼 = 𝜖1⃗;
while stopping criteria not met do

obtain a batch of samples from 𝒟val and
update 𝛼 by Eq. (3);

obtain a batch of samples from 𝒟train and
update V,Θ by certain optimizer;

end
◁Retrain: mask the dimensions with 0 where
𝛼 < 0 and retrain the model until the stopping
criteria are met.

3.4. On the Gradient Dynamics
As finding the optimal mask is essentially a combinatorial
optimization problem over the set of 2𝑆 possible status
of on-off switches (𝑆 is the number of switches), the pro-
posed gradient-based search rule given in (3) provides
an alternative approach to look through the discrete can-
didate sets in a continuous space. We elaborate below
that the STE-based gradient in (2) is related to the Tay-
lor approximation for the Leave-One-Out error and the
penalty term drifts auxiliary variables to find a model of

the target size.
For illustration purpose, we start with the dynamics

of the scalar-valued parameter 𝛼𝑖,𝑗 , the 𝑗-th element of
𝛼𝑖, that controls the mask for the 𝑗-th column vector,
V𝑖,𝑗 , of the embedding table V𝑖. Define the function
ℓ(𝑐) := ℒ[𝑐·V𝑖,𝑗] as the value of loss function when
replacing V𝑖,𝑗 by 𝑐 ·V𝑖,𝑗 (0 ≤ 𝑐 ≤ 1). By the first-order
Taylor approximation, we have ℓ(1)− ℓ(0) ≈ ℓ′(0) and
ℓ(0) − ℓ(1) ≈ −ℓ′(1). Moreover, it is worth noting
that the STE-based gradient in (2) with regards to 𝛼𝑖,𝑗 is
exactly ℓ′(1𝛼𝑖,𝑗>0), i.e.,

𝜕ℒbatch

𝜕1𝛼𝑖,𝑗>0
= ℓ′(1𝛼𝑖,𝑗>0) ≈ ℓ(1)− ℓ(0)

= ℒ[V𝑖,𝑗] − ℒ[0·V𝑖,𝑗].

(4)

In other words, the proposed gradient calculates the im-
portance (with batches of data) of the embedding com-
ponent V𝑖,𝑗 using the first-order Taylor approximation.
The above heuristics are also mentioned in [36, 37, 25].

We now consider the dynamics of all the auxiliary
parameters 𝛼𝑖,𝑗 ’s provided by (3). As illustrated above,
the term ∇(1𝛼𝑡>0)ℒdata measures the importance of each
embedding component by approximating the difference
between the loss value with un-masked embeddings and
the loss value with a mask on. Furthermore, the sign
of the penalty term 𝜇 in (3) is determined by the com-
parison between the number of un-masked components
and the target size 𝑠. As an analogue, the dynamics of
auxiliary parameters can be viewed as a particle system
in a neighborhood of 0 on real line, in which the particles
are initialized at the same point 𝜖 > 0 (i.e., the model
starts with all embeddings un-masked) and the velocity
of each particle is roughly 𝜂 · (ℒ[0·V𝑖,𝑗] − ℒ[V𝑖,𝑗]) by
the approximation in (4). In addition, an external force is
introduced by the penalty term, 𝜇

⃒⃒
‖1𝛼>0‖1 − 𝑠

⃒⃒
, which

can be interpreted as the wind flow with its velocity be-
ing −𝜇 < 0 when the number of positive particles is
larger than 𝑠 and being 𝜇 > 0 otherwise. As a result,
when the number of positive particles exceeds 𝑠, those
particles with smaller ℒ[0·V𝑖,𝑗] −ℒ[V𝑖,𝑗] tend to be neg-
ative, and vice versa; see Figure 2 for further illustration
of the proposed algorithm.

4. Experiments
To validate the performance of our proposed framework,
we conduct extensive experiments on three real-world
recommendation datasets. Through the experiments, we
seek to answer the following three questions: (i) How
does our proposed method, HAM, perform compared with
other auxiliary mask pruning (AMP) methods? (ii) How
does our proposed framework perform compared with
the existing field-wise embedding size search methods in

0
α!,#

velocity of α!,# ≈ 𝜂 - (ℒ[%&'!,#] −ℒ['!,#])

α!$,#$
if # of positive 𝛼)s > 𝑠
𝑣external = −𝜇 < 0

if # of positive 𝛼)s < 𝑠
𝑣external = 𝜇 > 0

un-masked V!,#

masked 0 - V!$,#$

Figure 2: An intuitive viewpoint of the gradient dynamics.

the literature in terms of prediction ability, and memory
consumption? (iii) How does the soft orthogonality regu-
larity boost the performance of our proposed framework?
In the following, we will first introduce the experimental
setups including datasets, baselines, and implementation
details, and then present results as well as discussions.

4.1. Datasets and Data Preparation.
We use three benchmark datasets in our experiments: (i)
MovieLens-1M: This dataset contains users’ ratings (1-
5) on movies. We treat samples with ratings greater than
3 as positive samples and samples with ratings below 3
as negative samples. Neutral samples with a rating equal
to 3 are dropped; (ii) Criteo: This dataset has 45 mil-
lion users’ clicking records on displayed ads. It contains
26 categorical feature fields and 13 numerical feature
fields; (iii) Avazu: This dataset has 40 million clicking
records on displayed mobile ads. It has 22 feature fields
spanning from user/device features to ad attributes. We
follow the common approach to remove the infrequent
features and discretize numerical values. First, we re-
move the infrequent feature values and treat them as
a single value “unknown", where the threshold is set to
{10, 4} for Criteo, and Avazu respectively. Second, we
convert all numerical values in into categorical values by
transforming a value 𝑧 to int(log(𝑧)2) if int(𝑧) > 2 and
to int(𝑧)−2 otherwise, which is proposed by the winner
of Criteo Competition 2. Third, we randomly split all
training samples into 80% for training, 10% for validation,
and 10% for testing.

4.2. Baselines
We compare our proposed pruning method HAM with
several baseline methods below.

• Uniform: The method assigns a uniform embedding
size for all feature fields;

• Auxiliary Mask Pruning: We compare our proposed
method with other common approaches that apply an

2https://www.csie.ntu.edu.tw/~r01922136/kaggle-2014-criteo.pdf

https://www.csie.ntu.edu.tw/~r01922136/kaggle-2014-criteo.pdf

auxiliary mask to the embeddings. To be specific, we
select three representative types of the auxiliary mask
listed in Table 1 and apply the same one-shot NAS
framework as described in Algorithm 1:

(i) SAM: the embeddings are masked directly by aux-
iliary weights 0 ≤ 𝛼 ≤ 1, which is equivalent to
DNIS [1].

(ii) SAM-GS: the auxiliary mask is obtained by the
Gumbel-sigmoid function of auxiliary parameters
𝛼 ∈ (0, 1) and 𝑢 ∼ Uniform(0,1) be;ow

Sigmoid[(log(
𝛼

1− 𝛼
) + log(

𝑢

1− 𝑢
))/𝜆].

(iii) HAM-p: the mask is generated by Bernoulli random
variables with parameters 𝑝’s when forwarding the
network. The gradient for 𝑝’s is calculated by STE.

In the retraining stage, we keep the embedding com-
ponents with top-𝑠 auxiliary weights for fair compar-
isons.

• AutoDim [2]: the state-of-the-art NAS-based method
in the literature, which outperforms a list of search
methods [8, 10, 5, 7]; see Section 3.4 in [2].

4.3. Implementation Details
Base Model architecture. We adopt four representa-
tive CTR-prediction models in the literature: FM [26],
DeepFM [27], AutoInt [28], DCN-V2 [31], as our base
models to compare their performance. For FM, DeepFM,
and AutoInt, we add an extra embedding vector layer
between the feature interaction layer and the embedding
layer as proposed in [10]. Linear transformations (with-
out bias) are applied to mixed-dimension embeddings so
that the transformed embedding vectors are of the same
size, which is set as 16 in our experiments. This is not
required for DCN-V2 due to the bit-wise crossing mecha-
nism. In the pretraining stage, the base dimension 𝑑𝑗 for
each feature field 𝑗 is chosen as min(16, 𝐶𝑗) where 𝐶𝑗

is the field dimension.
Optimization. We follow the common setup in the lit-

erature to employ Adam optimizer with the learning rate
of 10−3 to optimize model parameters in all three stages
and use SGD optimizer to optimize auxiliary weights in
the search stage. To fairly compare different AMP meth-
ods, the number of search epochs is fixed as 10, and the
learning rates of auxiliary parameters are chosen from
the search grid {1, 10−1, 10−2, 10−3}, and the tempera-
ture of the sigmoid function is chosen from the search
grid {1, 10−1, 10−2}. To obtain the best results of each
method, we pick 10−2 as the learning rate of SGD for
SAM, SAM-p, and HAM-p, 10−3 for our method HAM. In
HAM, the initial value of auxiliary weights 𝜖 = 0.01, and
the hyperparameter 𝜇 = 5× 10−5. For the orthogonal

regularity, we employ 𝜆ℛ(V) with 𝜆 = 10−3 for train-
ing models on MovieLens-1M, and use the pair-wise
cosine similarities 𝜆ℛ(V̄) with 𝜆 = 10−6 on Avazu. We
use PyTorch to implement our method and train it with
mini-batch size 2048 on a single 16G-Memory Nvidia
Tesla V100.

4.4. Performance Comparison
We next present detailed comparisons with other meth-
ods. We adopt AUC (Area Under the ROC Curve) on test
datasets to measure the performance of models and the
number of embedding parameters to measure memory
usage.
Comparison with other AMP Methods. We first

compare our proposed AMP methods to other common
AMP methods listed in Table 1 on MovieLens-1M. To
fairly compare the performance, we not only consider
comparing the test AUC under the same target total em-
bedding size 𝑠 but also take the number of model pa-
rameters into account. In Figure 3, we report the aver-
age values of test AUC under the same total embedding
size and the best results among 10 independent runs in
terms of AUC and plot Test AUC - # Parameter curve on
MovieLens-1M. For each method, three measurements
are provided from left to right with the target total em-
bedding size 𝑠 = 14, 28, 42 respectively. We drop the
Test AUC - # Parameter curve of the method with the
worst performance at the bottom. We observe that: (a)
fixing the target total embedding size, we can tell that
our method HAM outperforms all other methods on four
base models with regard to the value of test AUC. As il-
lustrated in Test AUC - # Parameter curves, with the same
budget of total embedding size, HAM tends to assign larger
sizes to informative feature fields with larger vocabulary
sizes compared with other methods. This should be at-
tributed to the gradient dynamics described in Section 3.4
which helps to identify the important embedding compo-
nents. As a result, HAM obtains models with higher AUC
under the same total embedding size; (b) it is interest-
ing to observe that SAM also assigns larger embedding
sizes to relatively un-informative features compared to
other methods with the same total embedding size, which
verify the findings in [12] that the magnitudes of auxil-
iary weights may not indicate the importance; (c) HAM
exhibits its superiority, not only on the vector-wise fea-
ture crossing models (FM, DeepFM, AutoInt), but also
on the bit-wise feature crossing model (DCN-V2) where
Uniform serves as a strong baseline. The performance
of HAM should be credited to the hard selection caused
by indicator functions. With the deterministic binary
mask, the masked model evaluated in the search stage is
equivalent to the selected model in the retraining stage,
as illustrated in Table 1. As a result, we conclude that
HAM exhibits stable performance on all four base models

s=14 s=28 s=42
Total Embedding Size

0.80

0.82

0.84
T

es
t

A
U

C

FM

s=14 s=28 s=42
Total Embedding Size

0.81

0.82

0.83

0.84

0.85

T
es

t
A

U
C

DeepFM

s=14 s=28 s=42
Total Embedding Size

0.82

0.83

0.84

0.85

T
es

t
A

U
C

AutoInt

s=14 s=28 s=42
Total Embedding Size

0.78

0.80

0.82

0.84

T
es

t
A

U
C

DCN-V2

0.2 0.3 0.4

Parameters (×105)

0.82

0.83

0.84

T
es

t
A

U
C

FM

0.1 0.2 0.3

Parameters (×105)

0.81

0.82

0.83

0.84

0.85

T
es

t
A

U
C

DeepFM

0.1 0.2 0.3

Parameters (×105)

0.82

0.83

0.84

T
es

t
A

U
C

AutoInt

0.2 0.4

Parameters (×105)

0.82

0.83

0.84

0.85

T
es

t
A

U
C

DCN-V2

Uniform

SAM

SAM-GS

HAM-p

HAM

Figure 3: Performance comparison of different auxiliary mask pruning methods on MovieLens-1M. For each method, three
measurements from left to right are reported with the target total embedding size 𝑠 = 14, 28, 42 respectively.

while SAM, SAM-GS, and HAM-p suffer from instability
and suboptimality in some circumstances.

2 4 6

Parameters (×106)

0.8050

0.8075

0.8100

0.8125

T
es

t
A

U
C

Criteo

10 12 14

Parameters (×106)

0.7825

0.7850

0.7875

0.7900

T
es

t
A

U
C

Avazu

HAM AutoDim

Figure 4: Performance comparison between HAM and Au-
toDim. ∘ - FM; △ - DeepFM; ⋆ - AutoInt; □ - DCN-V2.

Comparison with AutoDim. We also compare our
method with state-of-art NAS-based method AutoDim
with {2, 4, 8} as the candidate embedding size on
Criteo and Avazu datasets in Figure 4. In our method,
the total embedding size 𝑠 is set to be 90, 50 for Criteo and
Avazu respectively. Our method outperforms AutoDim
by finding models with comparably higher AUC and
smaller sizes. In addition, from computational perspec-
tives, our approach HAM has several advantages over
AutoDim: (a) HAM has a larger search space due to the
structural masking mechanism. For each feature, its can-
didate embedding size range from 0 to its base dimension
𝑑𝑗 . On the contrary, AutoDim requires manually pre-
specifying a set of candidate embedding sizes for each
feature; (b) HAM is more computationally efficient. We
emphasize that AutoDim introduces extra space and time
complexity by the operations of lifting, batch normaliza-
tion, and aggregation for each candidate size while HAM
only requires extra element-wise product between the
binary mask and embedding vectors. Moreover, HAM can
output multiple models of different total embedding sizes

given the same pre-trained model, whereas AutoDim re-
quires pretraining the model once more if changing the
candidate embedding size.

Pretrain with SO

Pr
et

ra
in

 w
ith

ou
t S

O

0.017 0.077 0.033 0.051 0.075 0.028 0.0091

0.17 0.058 0.0055 0.031 0.0036 0.011 0.023

0.27 0.14 0.046 0.045 0.013 0.091 0.043

0.075 0.34 0.21 0.046 0.066 0.06 0.053

0.1 0.08 0.22 0.3 0.04 0.061 0.025

0.17 0.092 0.25 0.3 0.11 0.028 0.05

0.065 0.12 0.16 0.37 0.14 0.36 0.021

0.0092 0.042 0.077 0.14 0.072 0.016 0.26
0.05

0.10

0.15

0.20

0.25

0.30

0.35

Figure 5: Cosine similarities between column vectors from
the embedding table of genre when pretraining DCN-V2 on
MovieLens-1M with and without SO.

Table 2
The test AUC gain by Algorithm 1 with SO under different
target embedding sizes on MovieLens-1M and Avazu

Data Size 𝑠
Test AUC

FM DeepFM AutoInt DCN-
V2

ML-1M

14 +.0006 +.0029 +.0013 +.0012
28 +.0018 +.0034 +.0018 +.0027
42 +.0036 +.0033 +.0009 +.0037

Avazu
44 +.0034 +.0039 +.0026 +.0031
66 +.0039 +.0044 +.0020 +.0033

The results are obtained by averaging 10 runs and the bold font
indicates statistically significant under two-sided t-tests

(𝑝 < 0.05).

On the Orthogonal Regularity. We further analyze
the effect of the orthogonal regularity proposed in our
framework. In Figure 5, we visualize the cosine simi-
larities between column vectors from the embedding of
genre when pretraining DCN-V2 on MovieLens-1Mwith
and without SO where the embedding size is set as 8. It
is clear to see that SO helps to reduce the correlations
within those embedding column vectors. Moreover, we
compare the performance of models selected by our pro-
posed Algorithm 1 with the one without SO in Table 2.
Statistical significant gains in test AUC can be observed
for MovieLens-1M and Avazu on all base models while
the training time per epoch with SO only increases by
about 1.6 times compared to the time without SO.

4.5. Discussions and Future Work
Multi-stage Search. As the initial base dimension
for each feature fields it tunable, we observe a gain,
∼0.3%, in test AUC from preliminary experiments on
MovieLens-1M by searching via HAM with a smaller ini-
tial size = 8. This observation confirms the claim made
in recent works [38] that enlarging search space is un-
beneficial or even detrimental to existing NAS methods.
To address this issue, our method can also be adapted to
design a multi-stage search strategy with a sufficiently
larger initial size and stage-wisely prune embeddings
with decreasing target embedding size 𝑠.

Comparison with PEP. To justify the advantages
of our proposed framework, we also discuss the most
recent Plug-in Embedding Pruning (PEP) [14] method.
As introduced before, PEP is an unstructured pruning
method that retains a large number of zero parameters
and requires the technique of sparse matrix storage. On
the contrary, our method can not only prune the em-
bedding columns explicitly but also reduce the parame-
ters in the dense layers while PEP cannot. For example,
HAM (𝑠 = 28) can obtain a lighter DCN-V2 model on
MovienLens-1M with only ∼8% number of parameters
(3,281/40,241) in the dense layers comparing to the model
with a uniform embedding size 16.

Comparison with SSEDS. During the revisions of
this paper, we noticed that a concurrent work [39] also
proposes to prune embeddings column-wisely as well
as row-wisely using indicator functions. Our work is
different from theirs in two aspects: (i) we focus on field-
wise search by pruning nearly orthogonal embedding col-
umn vectors; (ii) we use a gradient-descent-based method
in the search stage to solve the bilevel problem on the
training and validation set; the gradient dynamics enable
us to re-activate (un-mask) masked embeddings while
SSEDS directly mask all components with small gradient
magnitudes. Comparing our method with SSEDS and
incorporating our method into SSEDS is our future work.

5. Conclusions
In this paper, we propose a general auxiliary masking
pruning framework to search the embedding sizes for dif-
ferent feature fields adaptively in today’s recommender
systems. The proposed method leverages the indicator
function to search candidate models exactly, which is
efficient and can be easily applied to various models.
Extensive experiments demonstrate it can effectively re-
move redundant embedding dimensions without great
performance loss.

Acknowledgments
The authors are grateful to anonymous reviewers for
their constructive comments that greatly improved the
presentation of this paper. T. Xiao thanks his Ph.D. advi-
sor Dr. Krishnakumar Balasubramanian for supports and
helpful discussions during the internship at ByteDance.

References
[1] W. Cheng, Y. Shen, L. Huang, Differentiable neu-

ral input search for recommender systems, arXiv
preprint arXiv:2006.04466 (2020).

[2] X. Zhao, H. Liu, H. Liu, J. Tang, W. Guo, J. Shi,
S. Wang, H. Gao, B. Long, Memory-efficient em-
bedding for recommendations, arXiv preprint
arXiv:2006.14827 (2020).

[3] S. Zhang, L. Yao, A. Sun, Y. Tay, Deep learning
based recommender system: A survey and new
perspectives, ACM Computing Surveys (CSUR) 52
(2019) 1–38.

[4] P. Covington, J. Adams, E. Sargin, Deep neural net-
works for youtube recommendations, in: Proceed-
ings of the 10th ACM conference on recommender
systems, 2016, pp. 191–198.

[5] X. Zhao, C. Wang, M. Chen, X. Zheng, X. Liu,
J. Tang, Autoemb: Automated embedding dimen-
sionality search in streaming recommendations,
arXiv preprint arXiv:2002.11252 (2020).

[6] H. Liu, X. Zhao, C. Wang, X. Liu, J. Tang, Auto-
mated embedding size search in deep recommender
systems, in: Proceedings of the 43rd International
ACM SIGIR Conference on Research and Develop-
ment in Information Retrieval, 2020, pp. 2307–2316.

[7] M. R. Joglekar, C. Li, M. Chen, T. Xu, X. Wang,
J. K. Adams, P. Khaitan, J. Liu, Q. V. Le, Neural in-
put search for large scale recommendation models,
in: Proceedings of the 26th ACM SIGKDD Interna-
tional Conference on Knowledge Discovery & Data
Mining, 2020, pp. 2387–2397.

[8] T. Chen, L. Li, Y. Sun, Differentiable product quan-
tization for end-to-end embedding compression,

in: International Conference on Machine Learning,
PMLR, 2020, pp. 1617–1626.

[9] W.-C. Kang, D. Z. Cheng, T. Chen, X. Yi, D. Lin,
L. Hong, E. H. Chi, Learning multi-granular quan-
tized embeddings for large-vocab categorical fea-
tures in recommender systems, in: Companion
Proceedings of the Web Conference 2020, 2020, pp.
562–566.

[10] A. A. Ginart, M. Naumov, D. Mudigere, J. Yang,
J. Zou, Mixed dimension embeddings with applica-
tion to memory-efficient recommendation systems,
in: 2021 IEEE International Symposium on Infor-
mation Theory (ISIT), IEEE, 2021, pp. 2786–2791.

[11] H. Liu, K. Simonyan, Y. Yang, Darts: Differentiable
architecture search, in: International Conference
on Learning Representations, 2018.

[12] R. Wang, M. Cheng, X. Chen, X. Tang, C.-J. Hsieh,
Rethinking architecture selection in differentiable
nas, arXiv preprint arXiv:2108.04392 (2021).

[13] G. Bender, P.-J. Kindermans, B. Zoph, V. Vasudevan,
Q. Le, Understanding and simplifying one-shot
architecture search, in: International Conference
on Machine Learning, PMLR, 2018, pp. 550–559.

[14] S. Liu, C. Gao, Y. Chen, D. Jin, Y. Li, Learnable em-
bedding sizes for recommender systems, in: Inter-
national Conference on Learning Representations,
2020.

[15] D. Blalock, J. J. G. Ortiz, J. Frankle, J. Guttag, What is
the state of neural network pruning?, arXiv preprint
arXiv:2003.03033 (2020).

[16] P. Savarese, H. Silva, M. Maire, Winning the lottery
with continuous sparsification, in: Advances in
Neural Information Processing Systems, volume 33,
Curran Associates, Inc., 2020, pp. 11380–11390.

[17] C. Louizos, M. Welling, D. P. Kingma, Learning
sparse neural networks through l_0 regularization,
in: International Conference on Learning Represen-
tations, 2018.

[18] S. Xie, H. Zheng, C. Liu, L. Lin, Snas: stochastic
neural architecture search, in: International Con-
ference on Learning Representations, 2018.

[19] Y. Guo, A. Yao, Y. Chen, Dynamic network surgery
for efficient dnns, in: Proceedings of the 30th In-
ternational Conference on Neural Information Pro-
cessing Systems, 2016, pp. 1387–1395.

[20] X. Xiao, Z. Wang, Autoprune: Automatic network
pruning by regularizing auxiliary parameters, Ad-
vances in Neural Information Processing Systems
32 (NeurIPS 2019) 32 (2019).

[21] X. Zhou, W. Zhang, H. Xu, T. Zhang, Effective spar-
sification of neural networks with global sparsity
constraint, in: Proceedings of the IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition,
2021, pp. 3599–3608.

[22] Y. Bengio, N. Léonard, A. Courville, Estimating

or propagating gradients through stochastic neu-
rons for conditional computation, arXiv preprint
arXiv:1308.3432 (2013).

[23] E. Jang, S. Gu, B. Poole, Categorical reparameteri-
zation with gumbel-softmax, in: International Con-
ference on Learning Representations, 2016.

[24] S. Srinivas, A. Subramanya, R. Venkatesh Babu,
Training sparse neural networks, in: Proceedings
of the IEEE conference on computer vision and pat-
tern recognition workshops, 2017, pp. 138–145.

[25] M. Ye, D. Choudhary, J. Yu, E. Wen, Z. Chen, J. Yang,
J. Park, Q. Liu, A. Kejariwal, Adaptive dense-to-
sparse paradigm for pruning online recommen-
dation system with non-stationary data, arXiv
preprint arXiv:2010.08655 (2020).

[26] S. Rendle, Factorization machines, in: 2010 IEEE In-
ternational conference on data mining, IEEE, 2010,
pp. 995–1000.

[27] H. Guo, R. Tang, Y. Ye, Z. Li, X. He, Deepfm: a
factorization-machine based neural network for ctr
prediction, in: Proceedings of the 26th International
Joint Conference on Artificial Intelligence, 2017, pp.
1725–1731.

[28] W. Song, C. Shi, Z. Xiao, Z. Duan, Y. Xu, M. Zhang,
J. Tang, Autoint: Automatic feature interaction
learning via self-attentive neural networks, in: Pro-
ceedings of the 28th ACM International Conference
on Information and Knowledge Management, 2019,
pp. 1161–1170.

[29] R. Wang, B. Fu, G. Fu, M. Wang, Deep & cross
network for ad click predictions, in: Proceedings
of the ADKDD’17, 2017, pp. 1–7.

[30] X. He, T.-S. Chua, Neural factorization machines for
sparse predictive analytics, in: Proceedings of the
40th International ACM SIGIR conference on Re-
search and Development in Information Retrieval,
2017, pp. 355–364.

[31] R. Wang, R. Shivanna, D. Cheng, S. Jain, D. Lin,
L. Hong, E. Chi, Dcn v2: Improved deep & cross
network and practical lessons for web-scale learn-
ing to rank systems, in: Proceedings of the Web
Conference 2021, 2021, pp. 1785–1797.

[32] N. Bansal, X. Chen, Z. Wang, Can we gain more
from orthogonality regularizations in training deep
networks?, Advances in Neural Information Pro-
cessing Systems 31 (2018) 4261–4271.

[33] P. Rodríguez, J. Gonzalez, G. Cucurull, J. M. Gonfaus,
X. Roca, Regularizing cnns with locally constrained
decorrelations, arXiv preprint arXiv:1611.01967
(2016).

[34] S. Yan, Y. Zheng, W. Ao, X. Zeng, M. Zhang, Does
unsupervised architecture representation learning
help neural architecture search?, Advances in Neu-
ral Information Processing Systems 33 (2020) 12486–
12498.

[35] H. Hazimeh, Z. Zhao, A. Chowdhery, M. Sathi-
amoorthy, Y. Chen, R. Mazumder, L. Hong, E. H. Chi,
Dselect-k: Differentiable selection in the mixture
of experts with applications to multi-task learning,
arXiv preprint arXiv:2106.03760 (2021).

[36] P. Molchanov, S. Tyree, T. Karras, T. Aila,
J. Kautz, Pruning convolutional neural networks
for resource efficient inference, arXiv preprint
arXiv:1611.06440 (2016).

[37] P. Molchanov, A. Mallya, S. Tyree, I. Frosio, J. Kautz,
Importance estimation for neural network pruning,
in: Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, 2019,
pp. 11264–11272.

[38] Y. Ci, C. Lin, M. Sun, B. Chen, H. Zhang, W. Ouyang,
Evolving search space for neural architecture
search, in: Proceedings of the IEEE/CVF Interna-
tional Conference on Computer Vision, 2021, pp.
6659–6669.

[39] L. Qu, Y. Ye, N. Tang, L. Zhang, Y. Shi, H. Yin, Single-
shot embedding dimension search in recommender
system, arXiv preprint arXiv:2204.03281 (2022).

	1 Introduction
	2 Related Work
	3 Methodology
	3.1 Preliminaries
	3.2 Background
	3.3 Framework
	3.4 On the Gradient Dynamics

	4 Experiments
	4.1 Datasets and Data Preparation.
	4.2 Baselines
	4.3 Implementation Details
	4.4 Performance Comparison
	4.5 Discussions and Future Work

	5 Conclusions

