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Abstract
Shopping Query Intent Prediction (SQIP) is, given an online shopping user’s search query, e.g., “lv bag”, to predict their
intents, e.g., Brand: Louis Vuitton. SQIP is an extreme multi-label classification task for which many excellent algorithms
have been developed. However, little attention has been paid to how to create training data for SQIP. Previous studies used
pseudo-labeled data derived from query-click logs for training and suffered from the noise in the logs. Although there are
more sophisticated training data generation methods, they cannot be directly applied to SQIP. In this paper, we propose a
novel training data generation method for SQIP. The idea is to first build a labeling model that checks whether an intent is
valid for a query. The model then works as an "annotator" who checks a number of pairs comprising an intent and a query
to generate training data for SQIP. We show that such a model can be trained without manual supervision by utilizing a
huge amount of online shopping data. We demonstrate that the SQIP model trained with data generated by our labeling
model outperforms a model trained with query-click logs only and a model trained with data created by a competitive
data-programming-based method.
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1. Introduction
Online shoppers use search queries to search for products,
and most queries have search intents that indicate what
products shoppers want. For example, the query “lv bag
zebra” has Brand: Louis Vuitton and Pattern: Zebra
as its intents, as shown in Table 1.1

In this study, we assume that queries’ intents are rep-
resented with attribute values of products defined in an
online shopping service. Notice that simple string match-
ing between queries and intents would not work since
queries are written in natural languages; they can be
represented with abbreviations, e.g., “lv” for “Louis Vuit-
ton”, and ambiguous words, e.g., “orange”, as indicated in
Table 1. Moreover, intents might not always be explic-
itly written in queries, as the last example in the table
illustrates.

These intents, once correctly predicted, would be uti-
lized by a search system to retrieve relevant products,
since most products sold at an online shopping service
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1Intents are represented in the form of Attribute-name:
Attribute-value in this paper. We also represent attribute values
of products in a similar way.

Table 1
Examples of queries and their intents

Query Intents

“lv bag zebra” Brand: Louis Vuitton

Pattern: Zebra

“100% orange juice” Fruit taste: Orange

“cologne orange blossom” Scent: Orange

“sneaker mens orange” Color: Orange

“wheel 19inch” Tire size: 18 - 19.9inch

“nicole down jacket” Brand: Nicole

Filling: Feather

have attribute values such as Brand: Louis Vuitton.
If we aggregate these intents in bulk, they will be very
useful in understanding trend of different attributes e.g.
shoes of which brand and color the users wanted the
most in last month. Also, they will be very helpful in
understanding the overall market demand which could
help the merchants and the manufacturing companies.

Shopping query intent prediction (SQIP), given a query,
predicts its intents by selecting the most relevant subset
of attribute values from the attribute value inventory de-
fined in an online shopping service. In other words, SQIP
gives a natural language query a structure to facilitate
the retrieval of products.

In brief, our proposed method has following two
phases:

1. Making of LabelingModel: Our labeling model
is a binary classification model which predicts
whether given a (query, intent) pair is valid or
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not? For this we generate good quality training
data and train a BERT Sequence Classification
model. For the data generation, we follow follow-
ing steps:

a) Create Base SQIP model trained on prod-
uct catalog data with input "product title"
(could be considered as long pseudo shop-
ping query) and output "attribute values"
(could be considered as the pseudo shop-
ping query’s intents)

b) Generate (query, intent) pairs by getting
intents of queries from Query Click Logs
using the Base SQIP model and take in-
tersection with (query, intent) pairs from
Query Click Logs

2. Training Data Generation for SQIP: From raw
queries, get intents using the Base SQIP model
and filter these intents using the labeling model.

The contributions of this paper are following:

1. We present a novel two-phased approach to train-
ing data generation for SQIP that requires no man-
ual supervision.

2. We present how to build the labeling model, the
key module of our two-phased approach, by com-
bining weak supervision signals readily available
in online shopping services.

3. We empirically demonstrate that our two-phased
approach is effective through large-scale experi-
ments.

1.1. Background
SQIP is an extreme multi-label text classification task for
which many excellent algorithms have been developed
recently [1, 2, 3, 4, 5, 6, 7, 8]. These classification algo-
rithms can be used for SQIP once high-quality training
data is available.

However, obtaining high-quality training data for SQIP
is not straightforward. First of all, manual creation of
a sufficient volume of training data would be infeasible
because there are tens of thousands of predefined intents
and understanding shopping query intents would require
deep knowledge of a large number of product domains.
Accordingly, previous studies [9, 10] used query-click
logs to automatically generate training data by assuming
that if a product has an attribute-value like Brand: Louis
Vuitton and the page of the product is clicked by a
user who issued a query like “lv bag zebra,” an intent
of the query is Brand: Louis Vuitton. This heuristic
suffers from the inherent noise in query-click logs due
to, for instance, inconsistent click behaviors of fickle
users or erroneous retrieval results. Besides, it cannot
utilize a number of queries that are absent in query-click

logs. Despite the notable difficulty of obtaining high-
quality training data, little attention has been paid to the
problem in previous SQIP studies. Due to the success of
pre-trained models [11], transfer learning has also been
popular recently [12], where pre-trained models can be
seen as providing weak supervision. With this approach,
one fine-tunes a model that has been trained on a relevant
task for the purpose of the target task using a reasonable
amount of quality training data, which we cannot expect
in SQIP.

There have also been many studies on combining weak
supervision signals to dispense with manually annotated
training data [13, 14, 15, 16, 17, 18], which would be useful
if we may devise more than one kind of weak supervision
signal for a given task. For SQIP, however, it would be
infeasible to assume that labeling functions [14, 15, 17]
or keywords [16, 18] for target classes can be frequently
applied to or matched against queries since queries are
usually very short and diverse. It would also be infeasible
to prepare labeling functions or keywords for each class
since the number of classes in SQIP amounts to tens of
thousands and also the classes can be changed over time.

Automatically correcting corrupted labels has also
gained much attention recently [19, 20, 21]. These meth-
ods learn label corruption matrices, which would be pro-
hibitively large in SQIP since it has to deal with tens of
thousands of classes.

1.2. Preview of the Proposed Method
What makes training data generation for SQIP difficult?
We think it is the large number of classes; considering
many classes for a query at once tends to be difficult. We
therefore propose to decompose the task into two phases.
In the first phase, we build a labeling model that checks
whether an intent is valid for a query. In the second phase,
we use this labeling model to verify each pair comprising
a query and an intent on a large scale. Here, the labeling
model can be seen as an annotator who is asked to create
training data for SQIP. Refer to figures 1 and 2 for more
details.

How can we build the labeling model? We propose to
utilize catalog data and query-click logs since they are
readily available in online shopping services and provide
weak but different supervision signals so that they would
reinforce each other, as we will demonstrate in Section 4.

Base SQIP model is a weak SQIP model that takes
queries as input and predicts their intents, from which
we generate a set of (query, intent) pairs. The base SQIP
model is trained with catalog data, the database of prod-
ucts sold at an online shopping service, where various in-
formation about products such as product titles and their
attribute values are registered. Product titles are usually
a set of words that describe the features of products such
as “Louis Vuitton Shoulder bag Leather Zebra print,” which
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Figure 1: Overview of our training data generation method. In first phase we build the labeling model, which is depicted in

Figure 2 in detail. In second phase, we generate candidate training data from unlabeled queries by using the base SQIP model.

Afterwards, the labeling model filters out invalid (query, intent) pairs to generate the final training data.
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Figure 2: Closer look at the labeling model builder. Training data for the labeling model is the intersection of two sets of pairs

comprising a query and an intent. Each set is generated by one of two weak generators; the base SQIP model and query-click

logs.

can be seen as lengthy, detailed, merchant-made pseudo
queries about the products. Since these titles (i.e., pseudo
queries) are associated with attribute values of products
(i.e., intents) we can use the catalog data to train the base
SQIP model without manual annotation.

Query-click logs indicate the association between

queries and clicked item’s product attribute values (i.e.
intents). We generate another set of (query, intent) pairs
based on this association.

Catalog data provides the direct evidence of the associ-
ation between product titles and attribute values (intents),
but the titles are not real queries. In contrast, click logs



show the association between real queries and intents,
but it is only indicated indirectly and tends to be noisy.
However, these two data sources can generate reliable
training data for the labeling model in tandem.

In summary, our proposed method creates a "ma-
chine annotator" namely, the labeling model, using huge
amount of online shopping data to generate training data
for SQIP on a large scale without requiring any manual
labor.

Through large-scale SQIP experiments, we demon-
strate that the model trained with data generated by
our proposed method outperforms a model trained with
query-click logs only and a model trained with data cre-
ated by a competitive training data generation method
based on data programming [14].

All the data used in this study were obtained from
an online shopping service, Rakuten, and written in
Japanese. However, the ideas and methods in this paper
are independent of particular languages, and examples in
this paper are written in English for ease of explanation.

2. Related Work

2.1. Shopping Query Intent Prediction
Previous methods for SQIP can be categorized into
classification-based methods [9, 10] and sequence-
labeling-based methods [22].

In this study, our proposed method generates train-
ing data for the classification-based methods for the fol-
lowing two reasons: First, with sequence-labeling-based
methods, it would be more difficult to deal with tens of
thousands of classes, while, for classification-based meth-
ods, there have recently been many excellent extreme
classification algorithms that can handle a huge number
of classes. Second, sequence-labeling-based methods deal
with only intents that are explicitly written in queries.
However, valid intents are not always explicit in queries;
e.g., “nicole down jacket” has Filling: Feather as its valid
intent.

Our study is different from previous ones because we
focus on how to obtain a huge volume of high-quality
training data for SQIP, rather than how to classify queries.
Previous studies simply used query-click logs to obtain
pseudo-labeled data [9, 10], which tends to be noisy
and unreliable. We will demonstrate that our proposed
method can generate better training data in Section 4.

2.2. Learning with Weak Supervision
Our study can be seen as answering the research ques-
tion of how to train supervised models without rely-
ing on manual annotation, and therefore studies on
learning with weak supervision are quite relevant. As

we discussed in Section 1, most of the previous weak-
supervision methods are not appropriate for SQIP since
they require external knowledge bases [23, 24], a reason-
able amount of quality training data [12], labeling func-
tions or keywords for target classes [14, 15, 16, 17, 18],
or label corruption matrices to be learned [19, 20, 21].
Shen et al. proposed learning classifiers with only class
names [25]. However, their method assumes that classes
are organized in a hierarchy, so we cannot use their
method for SQIP where classes (intents) are not orga-
nized in a hierarchy. Karamanolakis et al. [26] proposed
a method that works with weak supervision such as lex-
icons, regular expressions, and knowledge bases of the
target domain. However, such weak supervision would
become obsolete quickly in SQIP, as discussed in Section 1.
Zhang et al. [27] proposed a teacher-student network
method which utilizes weakly labeled behaviour data for
SQIP. However, they do use strongly labeled data in their
training methodology to train the teacher network.

2.3. Extreme Multi-Label Classification
SQIP is an extreme multi-label classification (XML),
which tags a data point with the most relevant subset of
labels from an extremely large label set, that has gained
much attention recently [1, 2, 3, 7, 8]. While many clas-
sification algorithms have been proposed, training data
generation for XML has not been well studied. Zhang
et al. [28] addressed data augmentation for XML, which
assumed the existence of training data and thus cannot
be applied to our setting. Our study therefore differs
from previous XML studies since we directly tackle the
task of training data generation, though our method is
specifically designed for SQIP.

For a more comprehensive overview of classifica-
tion algorithms and data sets for XML, refer to http://
manikvarma.org/downloads/XC/XMLRepository.html.

3. Proposed Method
In this section, we describe each component of our
method as illustrated in Figures 1 and 2; catalog data, the
base SQIP model, query-click logs, the labeling model,
unlabeled queries, candidate training data, and the final
training data.

3.1. Catalog Data
Catalog data contains various information of products
sold at the shopping service, including product titles, de-
scriptions, prices, various attribute values such as brands,
sizes, and colors, among others. We use product titles
and attribute values to train the base SQIP model, since
product titles are usually a set of words that indicate
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Table 2
Examples of product titles and attribute values

Product title Attribute values

“[Next-day delivery] Nike Women’s Zoom Vaper 9.5 Tour 631475-602 Lady’s Shoes” Brand: Nike, Color: Red

“TIFFANY&CO. tiffany envelope charm [NEW] SILVER 270000487012x” Brand: Tiffany & Co., Color: Silver

“[Kids clothes/STUSSY] Classic Logo Strapback Cap black a118a” Clothing fabric: Cotton

“Fitty Closely-attached mask Pleated type Slightly small size Five-pack” Mask shape: Pleated

“[Unused] iQOS 2.4PLUS IQOS White Electric cigarette Main body 58KK0100180” Color: White

“NIKE AIR MAX 90 ESSENTIAL Sneaker Men’s 537384-090 Black [In-stock, May 15]” Shoe upper material: Leather, Brand: Nike

the features of products and can consequently be seen
as lengthy, detailed queries about the products. Table 2
shows examples of product titles and their attribute val-
ues in our catalog data, and indicates differences between
product titles and real queries. First, product titles some-
times contain tokens that would not appear in queries
usually, such as “[Unused]” and “[In-stock, May 15].” Sec-
ond, real queries are usually much shorter than product
titles. Third, attribute values might not always mean in-
tent. For example, color: red is not intent if we consider
product title as shopping query in first example of table
2. Catalog data is a useful data source for training a SQIP
model but is not sufficiently reliable by itself due to these
differences.

To train the base SQIP model, we used 117 million
product titles and their associated attribute values. The
number of different attribute values was 19,416.

3.2. Base SQIP Model
The base SQIP model takes unlabeled queries, such as
“lv bag zebra” as input and predicts their intents such as
Brand: Louis Vuitton and Pattern: Zebra. We had to
deal with hundreds of millions of training instances in
our experiments (Section 4) and chose extremeText [29].
It was the only extreme multi-label classification method
that we experimented with that could handle all training
instances in our environment. Other extreme multi-label
classification methods we experimented with include
Parabel [1], Bonsai [2], LightXML [7], XR-Linear [30],
and XR-Transformer [8].

The classification algorithm of extremeText is based on
probabilistic label trees (PLT) [31], in which leaf nodes
represent the target labels and the other nodes are logistic
regression classifiers. PLT guides data points from the
root node into their appropriate leaf nodes (labels) with
the logistic regression classifiers. For training the model,
we did not conduct extensive hyper-parameter tuning; we
used its default hyper-parameters, except that we chose
PLT as the loss function, and used the TF-IDF weights
for words.

3.3. Query-Click Logs
We used one year of query-click logs, which contained
72 million unique queries. As illustrated in Figure 2, the
query-click logs are used to generate (query, intent) pairs
as part of training data for the labeling model. We simply
enumerated all possible (query, intent) pairs such that a
query is associated with an intent (attribute-value) via
click relations in the logs.

3.4. Labeling Model
The labeling model takes a pair comprising a query (e.g.,
“lv bag zebra”) and an intent (e.g., Brand: Louis Vuitton)
as input and predicts whether the intent is valid for the
query.

3.4.1. Model Architecture

BERT[11]-based models have been very promising for
text pair classification and regression tasks, such as nat-
ural language inference (NLI) [32] and semantic textual
similarity (STS) [33]. Since the task of the labeling model
is binary classification, we used BertForSequenceClas-
sification2 where we use pretrained BERT model for
Japanese3.

We intentionally adopted a very simple approach
so that we could demonstrate the effectiveness of our
method.

3.4.2. Training Data

As shown in Figure 2, we automatically generate training
data for the labeling model which is the intersection of
two sets of (query, intent) pairs; one set is generated with
the base SQIP model4 and another is from the query-click
logs. Although each of these two kinds of supervision sig-
nals is weak by itself, we can accurately obtain a number
of valid (query, intent) pairs by combining them.

2https://huggingface.co/transformers/model_doc/bert.html.
3https://huggingface.co/cl-tohoku/bert-base-japanese-whole-word-
masking

4The input to the base SQIP model is the queries in the query click
logs.



To be specific, we obtained (query, intent) pairs such
that the query is associated with the intent in the query-
click logs and also, given the query as input, the base
SQIP model predicted the intent with probability 1.0. As
a result, we generated 5.3 million (query, intent) pairs
as positive examples for training of the labeling model.
We then generated 5.3 million (query, intent) pairs by
randomly pairing queries and intents, which we used as
negative examples.

3.4.3. Training Detail

The labeling model has been built with the training data
and the model architecture, as described above. Training
is done for one epoch with batch size 32 using AdamW
[34] optimizer.

3.5. Unlabeled Queries, Candidate
Training Data, and Final Training
Data

The second phase starts with predicting intents for unla-
beled queries from query logs with the base SQIP model
to generate candidate training data. We then filter out
erroneous intents with the labeling model to generate
the final training data.

Unlabeled queries were obtained from seven years of
query logs, which contained more than 1.5 billion unique
queries.

Candidate training data were generated under the fol-
lowing condition: 𝑘=5, meaning that the base SQIP model
predicted the most probable five intents for a query at
most, and threshold=1.0, i.e., only those intents whose
probability was 1.0 were outputted. As a result, we ob-
tained 377 million (query, intent) pairs. The number of
unique queries was 264 million.

The final training data were those (query, intent) pairs
whose probability given by the labeling model was at
least 0.99. Consequently, we obtained 169 million (query,
intent) pairs. The number of unique queries was 145
million. We trained and evaluated the SQIP model with
this final training data, as reported in Section 4. Table 3
shows examples of the final training data.

4. Experiments
In this section, through large-scale SQIP experiments in
which one predicts intents of a given query, we claim the
following:

1. Simply using query-click logs for training SQIP
models delivers poor performance.

2. Using catalog data for training leads to better
performance than simply using query-click logs
but is still unsatisfactory.

Table 3
Examples of the final training data

Query Intents

“alpha ma-1” Brand: Alpha Industries

“orange t-shirt” Color: Orange

“tropicana orange” Fruit taste: Orange

Series: Tropicana

“gres perfume orange” Scent: Orange, Brand: Gres

“washbowl 750” Capacity: 600 - 899ml

“original message carnation” Event/Holiday: Mother’s Day

3. Our proposed method that exploits both catalog
data and query-click logs can generate even better
training data.

4. Without the labeling model, the performance of
our method degrades, indicating the effectiveness
of the labeling model.

5. Our proposed method outperforms the compet-
itive training data generation method based on
data programming called Snorkel [14].

4.1. Experimental Conditions
In our experiments, we compared our proposed method
with four baseline methods described in Section 4.2. All
the compared methods differ only in how they obtain
training data. For classification, they use the same archi-
tecture, extremeText; specifically, all the methods trained
their SQIP model with the PLT loss function and the TF-
IDF weights for words; the other hyper-parameters were
set to the default values.

Test data has been manually created by a human an-
notator (who is not an author). The annotator was asked
to check (query, intent) pairs that were automatically
generated by pairing a query and an intent, such that
at least one token in the query was semantically similar
or relevant to the intent in order to exclude obviously
erroneous (query, intent) pairs from all possible pairs in
advance of manual annotation.5 As a result, 5,615 differ-
ent queries with at least one intent were obtained as test
data, and 2.57 intents were given to a query, on average.

Evaluation was based on precision and recall, which
were calculated with extremeText’s test command. Pre-
cision and recall were calculated for top 𝑘 outputs (i.e.,
intents) with 𝑘 being 1, 3, and 5, and we drew precision-
recall curves for the compared methods for each 𝑘 with
the probability threshold of extremeText changing from
0.0 to 1.0 with the interval of 0.01.

5The semantic similarity was measured by the cosine similarity be-
tween their sentence embeddings. We use fastText embeddings [35],
which had been learned from the query logs. The threshold for the
cosine similarity was set to 0.8.



Figure 3: Precision-recall curves for all Experiments

4.2. Compared Methods
We compared the following five methods:

4.2.1. QueryClick

The simplest baseline is QueryClick, which uses query-
click logs to generate training data in a similar way to
the previous methods [9, 10]. Specifically, we used seven

years of query-click logs and obtained (query, intent)
pairs in which product pages that had the intent (i.e.,
attribute value) were clicked through the query at least
ten times in the logs. The purpose of this was to reduce
the inherent noise in the query-click logs. As a result, we
obtained more than 670 million (query, intent) pairs. The
number of unique queries was 7,962,605, which indicated
that each query was given as many as 84 intents on aver-
age. This number is obviously too large given that most
queries consist of less than ten tokens and supports our
claim that simply using query-click logs as training data
would be inadequate.

4.2.2. Base

This is the base SQIP model, which uses only product
titles and their associated attribute values for training.

4.2.3. Proposed

This is a SQIP model trained with the final training data
generated with our proposed method, as described in
Section 3.

4.2.4. Proposed-LM

This is the same as Proposed except that it does not
use the labeling model. Proposed-LM is then trained
with the candidate training data in the second phase; its
training process is similar to self-training. Note that the
difference in performances between Proposed-LM and
Proposed can be seen as indicating the effectiveness of
the labeling model.

4.2.5. Snorkel

This baseline is the same as Proposed, except that the
labeling model is replaced with Snorkel [14], a train-
ing data generation method based on data programming
[13]. Like Proposed’s labeling model, Snorkel’s label-
ing model can be learned without manual supervision.
However, Snorkel requires labeling functions that imple-
ment a variety of domain knowledge, heuristics, and
any kind of weak supervision that would be useful for a
given task. Each labeling function takes unlabeled data
points as input and predicts their class labels. Snorkel
then uses these weakly-labeled data points to train a
generative labeling model which is supposed to be able
to label each data point more accurately than the label-
ing functions. Snorkel has influenced subsequent stud-
ies on training data generation [17], and has also been
adopted by the world’s leading organizations as described
in https://www.snorkel.org/. We therefore think that
comparing with the Snorkel-based baseline would effec-
tively show Proposed’s performance.

https://www.snorkel.org/


Table 4
Proposed’s best F1 scores

𝑘 F1 Precision Recall Threshold

1 0.537 0.678 0.444 0.21

3 0.535 0.620 0.470 0.26

5 0.531 0.608 0.471 0.26

Our Snorkel baseline, to be specific, was imple-
mented in the following way: The input and output of
Snorkel’s labeling model are the same as Proposed’s
labeling model; the input (query, intent) pairs are gen-
erated with the base SQIP model; the output is whether
given (query, intent) pairs are valid or not. We defined
following labeling functions that utilized the same two
kinds of weak supervision as Proposed, i.e., the query-
click logs and the base SQIP model which are following:

1. If given intent is associated with the given query
in query-click logs, return valid; otherwise return
invalid.

2. If output probability of the base SQIP model,
given (query, intent) pair is 1.0, return valid; oth-
erwise abstain.

3. Return invalid if the output probability is not
greater than 0.995; otherwise abstain.

Snorkel’s labeling model was trained with 11 million
(query, intent) pairs that had been weakly-labeled with
the three labeling functions.
Proposed’s labeling model was trained with 10.6 mil-

lion (query, intent) pairs as described in Section 3.4.2.

4.3. Results
Figure 3 shows precision-recall curves for the compared
methods and from them we can make the following ob-
servations:

1. QueryClick’s precision decreases sharply as we
try to increase recall.

2. Base generally outperforms QueryClick,
though its performance is still unsatisfactory.

3. Proposed outperforms all the other methods. Ta-
ble 4 shows Proposed’s best F1 scores and their
corresponding precision, recall, and threshold val-
ues for each 𝑘.

4. Proposed-LM’s performance is worse than that
of Proposed.

5. Snorkel can deliver good performances but can-
not outperform Proposed.

The relatively low performances of QueryClick and
Base and the relatively high performances of Proposed
and Snorkel indicate that query-click logs and catalog

data alone can only provide weak supervision. However,
combining them can lead to higher performances.

Comparing Proposed with Snorkel shows the supe-
riority of our labeling model over Snorkel. We think
this is because labeling functions of Snorkel or learning
methods with weak heuristic rules in general have been
known to suffer from a low coverage [26]; rules tend to
be applied to only a small subset of instances. In fact, the
first labeling function for Snorkel covered only 1.94%
of the training instances. The second and third label-
ing functions covered 60.61% and 12.73%, respectively.
On the other hand, the labeling model of Proposed is
learned with natural language words and phrases, which
BERT makes the maximum use of; that is to say, the la-
beling model of Proposed does not waste the training
data.

4.4. Error Analysis
Table 5 illustrates examples of wrong prediction made
by Proposed (𝑘=1, threshold=0.21). Most of the errors
were due to the class imbalance in the training data; i.e.,
the distribution of training instances across the intents is
biased or skewed, and intents for which we have few or
no instances tend to be difficult to predict [36]. Regard-
ing the first example in Table 5, “prince” can be Brand:
Prince and be part of Brand: Glen Prince. However,
the frequency of the former intent in the final training
data was 119,972, whereas that of the latter was only 33,
which caused the SQIP model to choose the former for
the query. Regarding the second example, the frequency
of Color: Red was 1,486,315, while that of Brand: Red
Wing was 15,592. For the last one, there was no train-
ing instance for Memory Standards: DDR3 in our final
training data and thus, the SQIP model could not predict
it.

4.5. Effect of Training Data Size
Figure 4 shows F1 scores of Proposed built with the
final training data of different sizes (’K’ and ’M’ stand
for ’thousand’ and ’million’). The 𝑘 and the threshold
of extremeText were set to 1 and 0.21 uniformly. The
graph indicates that increasing the data size leads to
better performances and that our final training data is
effective for SQIP. Although the improvement from 10M
to 145M is small, it is noteworthy that additional data
could improve the model trained already with as many
as 10M instances.

5. Future Direction
For training data generation, one possible direction is
to use product genre/category information. If we could



Table 5
Examples of wrong prediction made by Proposed

Query True Intents Predicted Intents

“glen prince” Brand: Glen Prince Brand: Prince

“red wing engineer boots us 7.5” Brand: Red Wing Color: Red

“pc 3 12800 ddr 3 sdram” Memory Standards: DDR3 −

Figure 4: Changes in F1 due to different training data sizes

for proposed

create query to product genre mapping of reliable qual-
ity, we can filter (query, intent) pairs further and create
higher quality training data. Also, we could utilize neigh-
bor signals, since similar queries should have more labels
in common, to remove noise from the dataset further.

For the classification model, one possibility is to use
label (i.e. intent) context information to create embed-
ding vector of input text (i.e. shopping query). Similar
previous work is by Chen et al. [37] who uses LGuid-
edLearn [38] for Product Item Category Classification.
Another possible method could be Label-Specific Docu-
ment Representation for Multi-Label Text Classification
by Xiao et al. [39]. Also, Cai et al. [40] proposes a hybrid
neural network model to simultaneously take advantage
of both label semantics and fine-grained text informa-
tion. Another possibilities are to consider Contrastive
Learning and KNN based methods [41, 42].

Another direction is to extend our proposed method
in other domains. If we could find a way to exploit
weak supervision signals readily available in a domain
for building the labeling model, we can easily apply our
approach to the domain. In the case of text classification
into Wikipedia categories [43], for instance, not only the
category information in Wikipedia articles but also the
links among corresponding articles in different languages
and the class hierarchy in Wikidata [44] can be exploited.

As we have seen in section 4.4 that data imbalance is

an issue, in the future we aim to address this.

6. Conclusion
In this paper, we proposed the novel two-phased train-
ing data generation method for SQIP. The idea is to first
build a labeling model that checks whether an intent
is valid for a query. The model then works as an "an-
notator" who checks a number of pairs comprising an
intent and a query to generate training data for SQIP. We
presented how to train such a model without manual su-
pervision by utilizing a huge amount of online shopping
data. Through the series of large-scale experiments with
the data from a real online shopping service, we have
demonstrated the effectiveness of our proposed method.

Acknowledgments
We thank our annotator Saki Hiraga-san for helping us
in creation of evaluation dataset. We thank all the re-
searchers in RIT for their support for this project.

References
[1] Y. Prabhu, A. Kag, S. Harsola, R. Agrawal, M. Varma,

Parabel: Partitioned label trees for extreme classifi-
cation with application to dynamic search advertis-
ing, in: Proceedings of the 2018 World Wide Web
Conference, WWW ’18, 2018, p. 993–1002.

[2] S. Khandagale, H. Xiao, R. Babbar, Bonsai – diverse
and shallow trees for extreme multi-label classifica-
tion, 2019. arXiv:1904.08249.

[3] W.-C. Chang, H.-F. Yu, K. Zhong, Y. Yang, I. S.
Dhillon, Taming Pretrained Transformers for Ex-
treme Multi-Label Text Classification, KDD ’20,
2020, p. 3163–3171.

[4] K. Dahiya, D. Saini, A. Mittal, A. Shaw, K. Dave,
A. Soni, H. Jain, S. Agarwal, M. Varma, Deepxml:
A deep extreme multi-label learning framework
applied to short text documents, in: Proceedings
of the 14th ACM International Conference on Web
Search and Data Mining, WSDM ’21, 2021, p. 31–39.

[5] A. Mittal, K. Dahiya, S. Agrawal, D. Saini, S. Agar-
wal, P. Kar, M. Varma, Decaf: Deep extreme classi-

http://arxiv.org/abs/1904.08249


fication with label features, in: Proceedings of the
14th ACM International Conference on Web Search
and Data Mining, WSDM ’21, 2021, p. 49–57.

[6] A. Mittal, N. Sachdeva, S. Agrawal, S. Agarwal,
P. Kar, M. Varma, Eclare: Extreme classification
with label graph correlations, in: Proceedings
of the Web Conference 2021, WWW ’21, 2021, p.
3721–3732.

[7] T. Jiang, D. Wang, L. Sun, H. Yang, Z. Zhao,
F. Zhuang, Lightxml: Transformer with dynamic
negative sampling for high-performance extreme
multi-label text classification, in: Thirty-Fifth AAAI
Conference on Artificial Intelligence, AAAI 2021,
2021, pp. 7987–7994.

[8] J. Zhang, W.-C. Chang, H.-F. Yu, I. S. Dhillon, Fast
multi-resolution transformer fine-tuning for ex-
treme multi-label text classification, in: 35th Con-
ference on Neural Information Processing Systems,
NeurIPS 2021, 2021.

[9] C. Wu, A. Ahmed, G. R. Kumar, R. Datta, Predicting
latent structured intents from shopping queries, in:
Proceedings of the 26th International Conference
on World Wide Web, WWW ’17, 2017, pp. 1133–
1141.

[10] J. Zhao, H. Chen, D. Yin, A dynamic product-aware
learning model for e-commerce query intent under-
standing, in: Proceedings of the 28th ACM Interna-
tional Conference on Information and Knowledge
Management, CIKM ’19, 2019, p. 1843–1852.

[11] J. Devlin, M.-W. Chang, K. Lee, K. Toutanova, BERT:
Pre-training of deep bidirectional transformers for
language understanding, in: Proceedings of the
2019 Conference of the North American Chapter
of the Association for Computational Linguistics:
Human Language Technologies, NAACL-HLT ’19,
2019, pp. 4171–4186.

[12] M. Ben Noach, Y. Goldberg, Transfer learning be-
tween related tasks using expected label propor-
tions, in: Proceedings of the 2019 Conference on
Empirical Methods in Natural Language Process-
ing and the 9th International Joint Conference on
Natural Language Processing, EMNLP-IJCNLP ’19,
2019, pp. 31–42.

[13] A. J. Ratner, C. M. De Sa, S. Wu, D. Selsam, C. Ré,
Data programming: Creating large training sets,
quickly, in: D. Lee, M. Sugiyama, U. Luxburg,
I. Guyon, R. Garnett (Eds.), Advances in Neural
Information Processing Systems, volume 29 of
NeurIPS ’16, 2016.

[14] A. Ratner, S. H. Bach, H. Ehrenberg, J. Fries, S. Wu,
C. Ré, Snorkel: Rapid training data creation with
weak supervision, Proceedings of the VLDB En-
dowment 11 (2017) 269–282.

[15] B. Hancock, M. Bringmann, P. Varma, P. Liang,
S. Wang, C. Ré, Training classifiers with natural

language explanations, Proceedings of The 56th An-
nual Meeting of the Association for Computational
Linguistics 2018 (2018) 1884–1895.

[16] Y. Meng, J. Shen, C. Zhang, J. Han, Weakly-
supervised neural text classification, in: Proceed-
ings of the 27th ACM International Conference on
Information and Knowledge Management, CIKM
’18, 2018, p. 983–992.

[17] A. Awasthi, S. Ghosh, R. Goyal, S. Sarawagi, Learn-
ing from rules generalizing labeled exemplars, in:
8th International Conference on Learning Repre-
sentations, ICLR 2020, Addis Ababa, Ethiopia, April
26-30, 2020, OpenReview.net, 2020. URL: https:
//openreview.net/forum?id=SkeuexBtDr.

[18] Y. Meng, Y. Zhang, J. Huang, C. Xiong, H. Ji,
C. Zhang, J. Han, Text classification using label
names only: A language model self-training ap-
proach, in: Proceedings of the 2020 Conference on
Empirical Methods in Natural Language Processing,
EMNLP ’20, 2020, pp. 9006–9017.

[19] G. Patrini, A. Rozza, A. K. Menon, R. Nock, L. Qu,
Making deep neural networks robust to label noise:
A loss correction approach, in: 2017 IEEE Confer-
ence on Computer Vision and Pattern Recognition,
CVPR ’17, 2017, pp. 2233–2241.

[20] D. Hendrycks, M. Mazeika, D. Wilson, K. Gimpel,
Using trusted data to train deep networks on la-
bels corrupted by severe noise, in: Proceedings
of the 32nd International Conference on Neural
Information Processing Systems, NIPS’18, 2018, p.
10477–10486.

[21] G. Zheng, A. H. Awadallah, S. Dumais, Meta label
correction for noisy label learning, in: Proceedings
of the AAAI Conference on Artificial Intelligence,
volume 35 of AAAI ’21, 2021.

[22] X. Li, Y.-Y. Wang, A. Acero, Extracting structured in-
formation from user queries with semi-supervised
conditional random fields, in: Proceedings of the
32nd International ACM SIGIR Conference on Re-
search and Development in Information Retrieval,
SIGIR ’09, 2009, p. 572–579.

[23] M. Mintz, S. Bills, R. Snow, D. Jurafsky, Distant
supervision for relation extraction without labeled
data, in: Proceedings of the Joint Conference of
the 47th Annual Meeting of the ACL and the 4th In-
ternational Joint Conference on Natural Language
Processing of the AFNLP: Volume 2 - Volume 2,
ACL ’09, 2009, p. 1003–1011.

[24] F. Brahman, V. Shwartz, R. Rudinger, Y. Choi, Learn-
ing to rationalize for nonmonotonic reasoning with
distant supervision, in: The Thirty-Fifth AAAI Con-
ference on Artificial Intelligence, AAAI ’21, AAAI
Press, 2021, pp. 12592–12601.

[25] J. Shen, W. Qiu, Y. Meng, J. Shang, X. Ren, J. Han,
TaxoClass: Hierarchical multi-label text classifica-

https://openreview.net/forum?id=SkeuexBtDr
https://openreview.net/forum?id=SkeuexBtDr


tion using only class names, in: Proceedings of the
2021 Conference of the North American Chapter
of the Association for Computational Linguistics:
Human Language Technologies, NAACL-HLT ’21,
2021, pp. 4239–4249.

[26] G. Karamanolakis, S. Mukherjee, G. Zheng, A. H.
Awadallah, Self-training with weak supervision, in:
Proceedings of the 2021 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
NAACL ’21, 2021, pp. 845–863.

[27] D. Zhang, Z. Li, T. Cao, C. Luo, T. Wu, H. Lu,
Y. Song, B. Yin, T. Zhao, Q. Yang, Queaco: Borrow-
ing treasures from weakly-labeled behavior data
for query attribute value extraction, in: Proceed-
ings of the 30th ACM International Conference on
Information and Knowledge Management, CIKM
’21, Association for Computing Machinery, New
York, NY, USA, 2021, p. 4362–4372. URL: https:
//doi.org/10.1145/3459637.3481946. doi:10.1145/
3459637.3481946.

[28] D. Zhang, T. Li, H. Zhang, B. Yin, On data augmen-
tation for extreme multi-label classification, CoRR
abs/2009.10778 (2020). URL: https://arxiv.org/abs/
2009.10778.

[29] M. Wydmuch, K. Jasinska, M. Kuznetsov, R. Busa-
Fekete, K. Dembczyński, A no-regret generalization
of hierarchical softmax to extreme multi-label clas-
sification, in: Proceedings of the 32nd International
Conference on Neural Information Processing Sys-
tems, NeurIPS ’18, 2018, p. 6358–6368.

[30] H.-F. Yu, K. Zhong, I. S. Dhillon, Pecos: Prediction
for enormous and correlated output spaces, arXiv
preprint arXiv:2010.05878 (2020).

[31] K. Jasinska, K. Dembczynski, R. Busa-Fekete,
K. Pfannschmidt, T. Klerx, E. Hullermeier, Extreme
f-measure maximization using sparse probability
estimates, in: M. F. Balcan, K. Q. Weinberger (Eds.),
Proceedings of The 33rd International Conference
on Machine Learning, volume 48 of Proceedings of
Machine Learning Research, 2016, pp. 1435–1444.

[32] Z. Zhang, Y. Wu, H. Zhao, Z. Li, S. Zhang, X. Zhou,
X. Zhou, Semantics-aware BERT for language un-
derstanding, in: the Thirty-Fourth AAAI Confer-
ence on Artificial Intelligence, 2020.

[33] D. Cer, M. Diab, E. Agirre, I. Lopez-Gazpio, L. Specia,
SemEval-2017 task 1: Semantic textual similarity
multilingual and crosslingual focused evaluation,
in: Proceedings of the 11th International Workshop
on Semantic Evaluation (SemEval-2017), 2017, pp.
1–14.

[34] I. Loshchilov, F. Hutter, Decoupled weight decay
regularization, in: 7th International Conference on
Learning Representations, ICLR ’19, 2019.

[35] P. Bojanowski, E. Grave, A. Joulin, T. Mikolov, En-

riching word vectors with subword information,
arXiv preprint arXiv:1607.04606 (2016).

[36] N. V. Chawla, K. W. Bowyer, L. O. Hall, W. P.
Kegelmeyer, Smote: Synthetic minority over-
sampling technique, Journal of Artificial Intelli-
gence Research 16 (2002) 321–357.

[37] L. Chen, H. Miyake, Label-guided learning for item
categorization in e-commerce, in: NAACL, 2021.

[38] X. Liu, S. Wang, X. Zhang, X. You, J. Wu,
D. Dou, Label-guided learning for text classifica-
tion, 2020. URL: https://arxiv.org/abs/2002.10772.
doi:10.48550/ARXIV.2002.10772.

[39] L. Xiao, X. Huang, B. Chen, L. Jing, Label-specific
document representation for multi-label text classi-
fication, in: Proceedings of the 2019 Conference on
Empirical Methods in Natural Language Processing
and the 9th International Joint Conference on Nat-
ural Language Processing (EMNLP-IJCNLP), Asso-
ciation for Computational Linguistics, Hong Kong,
China, 2019, pp. 466–475. URL: https://aclanthology.
org/D19-1044. doi:10.18653/v1/D19-1044.

[40] L. Cai, Y. Song, T. Liu, K. Zhang, A hybrid bert
model that incorporates label semantics via ad-
justive attention for multi-label text classification,
IEEE Access 8 (2020) 152183–152192. doi:10.1109/
ACCESS.2020.3017382.

[41] L. Zhu, H. Chen, C. Wei, W. Zhang, Enhanced rep-
resentation with contrastive loss for long-tail query
classification in e-commerce, in: Proceedings of
The Fifth Workshop on e-Commerce and NLP (EC-
NLP 5), Association for Computational Linguistics,
Dublin, Ireland, 2022, pp. 141–150. URL: https://
aclanthology.org/2022.ecnlp-1.17. doi:10.18653/
v1/2022.ecnlp-1.17.

[42] X. Su, R. Wang, X. Dai, Contrastive learning-
enhanced nearest neighbor mechanism for multi-
label text classification, in: Proceedings of
the 60th Annual Meeting of the Association for
Computational Linguistics (Volume 2: Short Pa-
pers), Association for Computational Linguistics,
Dublin, Ireland, 2022, pp. 672–679. URL: https://
aclanthology.org/2022.acl-short.75. doi:10.18653/
v1/2022.acl-short.75.

[43] O. Dekel, O. Shamir, Multiclass-multilabel classifica-
tion with more classes than examples, in: Proceed-
ings of the Thirteenth International Conference on
Artificial Intelligence and Statistics, volume 9 of
Proceedings of Machine Learning Research, 2010, pp.
137–144.

[44] D. Vrandečić, M. Krötzsch, Wikidata: A free collab-
orative knowledge base, Communications of the
ACM 57 (2014) 78–85. URL: http://cacm.acm.org/
magazines/2014/10/178785-wikidata/fulltext.

https://doi.org/10.1145/3459637.3481946
https://doi.org/10.1145/3459637.3481946
http://dx.doi.org/10.1145/3459637.3481946
http://dx.doi.org/10.1145/3459637.3481946
https://arxiv.org/abs/2009.10778
https://arxiv.org/abs/2009.10778
https://arxiv.org/abs/2002.10772
http://dx.doi.org/10.48550/ARXIV.2002.10772
https://aclanthology.org/D19-1044
https://aclanthology.org/D19-1044
http://dx.doi.org/10.18653/v1/D19-1044
http://dx.doi.org/10.1109/ACCESS.2020.3017382
http://dx.doi.org/10.1109/ACCESS.2020.3017382
https://aclanthology.org/2022.ecnlp-1.17
https://aclanthology.org/2022.ecnlp-1.17
http://dx.doi.org/10.18653/v1/2022.ecnlp-1.17
http://dx.doi.org/10.18653/v1/2022.ecnlp-1.17
https://aclanthology.org/2022.acl-short.75
https://aclanthology.org/2022.acl-short.75
http://dx.doi.org/10.18653/v1/2022.acl-short.75
http://dx.doi.org/10.18653/v1/2022.acl-short.75
http://cacm.acm.org/magazines/2014/10/178785-wikidata/fulltext
http://cacm.acm.org/magazines/2014/10/178785-wikidata/fulltext

	1 Introduction 
	1.1 Background 
	1.2 Preview of the Proposed Method

	2 Related Work 
	2.1 Shopping Query Intent Prediction 
	2.2 Learning with Weak Supervision 
	2.3 Extreme Multi-Label Classification 

	3 Proposed Method 
	3.1 Catalog Data 
	3.2 Base SQIP Model 
	3.3 Query-Click Logs 
	3.4 Labeling Model 
	3.4.1 Model Architecture
	3.4.2 Training Data
	3.4.3 Training Detail

	3.5 Unlabeled Queries, Candidate Training Data, and Final Training Data 

	4 Experiments 
	4.1 Experimental Conditions 
	4.2 Compared Methods 
	4.2.1 QueryClick
	4.2.2 Base
	4.2.3 Proposed
	4.2.4 Proposed-LM
	4.2.5 Snorkel 

	4.3 Results 
	4.4 Error Analysis 
	4.5 Effect of Training Data Size 

	5 Future Direction
	6 Conclusion 

