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Abstract
Data sparsity is a challenge facing most modern recommendation systems. With cross-domain recommendation technique,
one can overcome data sparsity by leveraging knowledge from relevant domains. This approach can be further enhanced by
considering the latent sentiment information. However, as this latent sentiment information is derived from both relevant
and irrelevant sources, the performance of the recommendation system may decline. This is a negative transfer (NT) problem,
where the knowledge that is derived frommultiple sources affects the system. Also, these source domains are often imbalanced,
which could further hurt the performance of the recommendation system. To this end, recent research has shown that NT is
caused by domain divergence, source and target quality, and algorithms that are not carefully designed to utilise the target
data to improve the domain transferability. While various research works have been proposed to prevent NT, these address
only some of the factors that may lead to NT. In this paper, we propose a more systematic and comprehensive approach to
overcoming NT in sentiment analysis by tackling the main causes of NT. Our approach combines the use of cost weighting
learning, uncertainty-guided (aleatoric and epistemic) loss function over the target dataset, and the concept of importance
sampling, to derive a robust model. Experimental results on a sentiment analysis task using Amazon review datasets
validate the superiority of our proposed method when compared to three other state-of-the-art methods. To disentangle the
contributions behind the success of both uncertainties, we conduct an ablation study exploring the effect of each module in
our approach. Our findings reveal that we can improve a sentiment analysis task in a transfer learning setting from 4% to 10%
when combining both uncertainties. Our outcomes show the importance of considering all factors that may lead to NT. These
findings can help to build an effective recommendation system when including the latent sentiment information.
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1. Introduction
Generally, recommendation systems are used in commer-
cial applications to help users discover the products or
services they are looking for. In order to solve the lack
of data and the cold-start1 problem, researchers have
increasingly introduced concepts of source domain and
target domain into cross-domain recommendation [1].
Through the use of transfer learning, cross-domain based
recommendation is able to leverage the rich information
from multiple domains as against in a single domain, and
transfer knowledge effectively from one domain to an-
other. For cross-domain recommendation to work, how-
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1A problem where the system cannot draw any inferences for users
or items about which it has not yet gathered sufficient information

ever, users’ interests or item features must be consistent
or correlated across domains [1].

Most existing cross-domain recommendation methods
rely only on sharing text information, such as ratings,
tags or reviews, and ignore latent sentiment information
in the sentiment analysis domain [2]. Recently, methods
that consider this latent sentiment information have been
proven to be more effective when compared with existing
recommendation algorithms that do not consider this
information [3]. This is because user reviews are usually
subjective, so they would not be able to reflect the user’s
preferences and sentiments towards different attributes.

As these sentiment data are derived from both rele-
vant and irrelevant sources and the datasets are often
imbalanced, the performance of these cross-domain rec-
ommendation system may decline due to learning a bias
[4]. Also, these cross-domain models did not take into
account the bidirectional latent relations between users
and items [5]. A better solution to this problem is to in-
troduce transfer learning (TL) [6] into the cross-domain
recommendation system [5]. TL systems utilise data and
knowledge from a related domain (known as the source
domain) to mitigate this learning bias, and can improve
the generalizability of models in the target domain [6].
Regrettably, this approach is not always successful un-
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less specific guidelines are adhered to [7]; 1) both tasks
should be related; 2) the source and target domain should
be similar; 3) and a model which can learn both domains
should be applied to both the source and target datasets.
When these guidelines are not followed, the performance
of the target model is likely to degrade. This is known
as negative transfer (NT) [8]. NT can be caused by four
main issues [7]: One: Domain divergence - When the
divergence between the source and target domains is
wide, NT will occur. Two: Transfer algorithm - When
designing a transfer algorithm, it should have a theoreti-
cal guarantee that the performance in the target domain
will be better when auxiliary data are used, or the transfer
algorithm should be carefully designed to improve the
transferability of auxiliary domains, else NT may occur.
Three: Source data quality - The quality of the source
data determines the quality of the transferred knowledge.
If the source data are very noisy, then a model trained
on them is unreliable. Four: Target data quality - The
target domain data may be noisy, which may also lead to
NT. Also, the amount of labelled target data has a direct
impact on the learning process if not fully utilised by the
learning algorithm [9, 10].

Various research works have proposed the mitigation
of NT, and these are seen in the following areas [7]; One:
By enhancing the data transferability strategy [11, 7].
This is done by either addressing the domain divergence
between the source and target [12, 11], or reweighing
strategy by applying more weight to those source do-
mains which are similar to the target dataset [13, 14], or
by learning a common latent feature space [15]. Two:
By enhancing the model transferability enhancement
through transferable normalisation [16], or by making
the model robust to adversarial samples through the use
of a robust optimisation loss function [17]. Three: By en-
hancing the target prediction through the use of pseudo
labelling [18, 19].

Previous research found that the use of a model that
is robust to adversarial samples results in better transfer-
ability [20, 21]. They tend to have better accuracy than a
standard target model. Similarly, Liang et al. [20] found a
positive correlation between a model that is robust to an
adversarial sample and the knowledge transferred. This
work suggests such a model can benefit from the knowl-
edge transfer between the source and target. By relying
on such methods, these approaches can be limited to
being robust to adversarial samples and fail to model un-
certainty under data and label distribution, which could
introduce further bias [22]. Recently, the work of Grauer
and Pei [22] has shown that when model uncertainty
is known and distributed evenly, the performance and
reliability of the model are greatly improved.

In this work, we introduce the use of an uncertainty-
guided loss function to guide the training process when

utilising the source and target datasets and incorporate a
cost weight to tackle the problem of imbalanced data that
may further increase the domain divergence issue. Hence,
this work uses the idea of model and data transferability
enhancement to develop a more robust model aimed at
preventing negative transfer. By using such a systematic
approach, wewould be able to tackle the fourmain causes
of NT mentioned above. Our main contributions are
summarised as follows.

• We propose using a combined uncertainty as a
loss function. This combined uncertainty consists
of both the aleatoric and epistemic uncertainties.
The epistemic uncertainty captures the model un-
certainty, while the aleatoric uncertainty captures
the uncertainty concerning information that the
data cannot explain and is modelled over the tar-
get and source dataset to guide the learning pro-
cess. By using the aleatoric uncertainty-guided
loss function over the target and source data, we
can derive more information and enhance the
model’s transferability.

• We propose combining an uncertainty-guided
loss function, a cost-sensitive classification
method of incorporating cost-weighting into the
model and an importance sampling strategy to
enhance the data and model transferability. This
method can be used when there is imbalanced
data and/or dissimilarity between the source and
target dataset.

• Finally, we perform an ablation study to disentan-
gle the contributions behind the success of each
module introduced in our system.

The remainder of this paper is organised as follows.
We present related work in Section 2. Next, we intro-
duce our proposed approach in 3. Section 4 presents our
datasets, candidate models, and experimental setup. The
results and discussion are presented in Sections 5 and
6, respectively, before considering threats in Section 7.
Finally, we conclude the study in Section 8.

2. Related Work
Transfer Learning is a research strategy in machine learn-
ing (ML) that aims to use the knowledge gained while
solving one problem and apply it to a different but related
problem [23]. Early methods in this area have exploited
techniques such as instance weighting [24, 25], feature
mapping [26, 27] and transferring relational knowledge
[28]. Due to the increased processing power afforded
by graphical processing units (GPUs), deep learning is
now used more frequently in transfer learning tasks and
when compared to earlier approaches, such models have



achieved better results in the discovery domain invariant
features [29]. It was shown that when deep learning is
used the transferability of features decreases as the dis-
tance between the base task and target task increases,
but that transferring features even from distant tasks
can be better than using random features [29]. Some of
these deep learning methods [30, 31, 32] have exploited
the use of mismatch measurement, such as Maximum
MeanDiscrepancy (MMD) to transfer features or by using
generative adversarial networks (GANs) [33]. Although
these methods have all achieved high performance in
different domains, such as in computer vision [34] and
natural language processing [35], they were not designed
to tackle the problem of negative transfer (NT).

Other prominent lines of work can be seen in deep
learning to tackle the issue of NT. These works include
the use of instance weighting (e.g., predictive distribution
matching (PDM) [13]) , enhancing the feature transfer-
ability through the use of a latent feature (e.g., DTL [36]),
and the use of soft loss function based on soft pseudo-
labels (e.g., Mutual Mean-Teaching (MMT)[19]). These
methods do not guarantee tackling NT, as they tackle
some causes of NT, but not all (e.g., PMD method tack-
les the transfer algorithm and source data quality, while
MMT tackles the domain divergence, transfer algorithm
and target data quality issue). Although, a previous
study exploring the benefits of modelling epistemic and
aleatoric uncertainty in Bayesian deep learning models
for vision tasks has demonstrated that when these uncer-
tainties are integrated into the loss functions, themodel is
more robust to noisy data, how these can be used to tackle
NT has not been looked at. Hence, our main objective
in this paper is to derive a robust loss function for
deep transfer learning that tackles the causes ofNT
mentioned in Section 1.

3. Method
This section provides a formal definition of NT and pro-
posed methods to overcome it.

3.1. Negative Transfer
Notation: We use the following notation 𝑃𝑠px𝑠q ≠ 𝑃𝑡px𝑡q
and 𝑃𝑠p𝑦𝑠|x𝑠q ≠ 𝑃𝑠p𝑦𝑡|x𝑡q to denote the marginal and con-
ditional distribution of source and target sets, respec-
tively. In this case, x𝑠 and x𝑡 represent the source and
target, respectively. Zhang et al. [7] gave a mathematical
definition of NT, and proposed a way to determine the
degree of NT (NTD) when it happens.
Definition: Let 𝜖𝜀 be the test error in the target domain,
𝜃pS,Tq a TL algorithm between source (S) and target (T),
and 𝜃p∅,Tq the same algorithm which does not use the
source domain information at all. Then, NT happens

when 𝜖𝜀(𝜃pS,Tq) > 𝜖𝜀p𝜃p∅,Tqq, and the degree of NT can
be evaluated by equation 1 below:

𝑁𝑇𝐷 “ 𝜖𝜀p𝜃pS,Tqq ´ 𝜖𝜀p𝜃p∅,Tqq (1)

When NTD is positive, then negative transfer has oc-
curred. Next, we propose a systematic way to avoid
negative transfer.

3.2. Proposed Methods
We explain the three concepts used in our method below:
Cost-sensitive Classification: The idea of cost-
sensitive classification is used when there is a higher
cost of mislabelling one class over the other class [37].
Cost-sensitive learning tackles the class imbalance prob-
lem by changing the model cost function giving more
weight to the minority class and multiplying the loss
of each training sample by a specific factor. The imbal-
anced data distribution is not modified directly during
training [37]. Madabushi et al. [38] introduced a cost-
weighting strategy in the Bert model, which increases
the weight of incorrectly labelled sentences by altering
the cost function of the final model layer. The cost func-
tion is changed by modifying the cross-entropy loss for
a single prediction 𝑥, and the model’s prediction for class
k to accommodate an array weight as shown in equation
2

𝑙𝑜𝑠𝑠p𝑥, 𝑐𝑙𝑎𝑠𝑠q “ 𝑤𝑒𝑖𝑔ℎ𝑡r𝑐𝑙𝑎𝑠𝑠s∅ (2)

where ∅ “ −𝑥r𝑐𝑙𝑎𝑠𝑠s ` 𝑙𝑜𝑔p∑𝑘“1 𝑒𝑥𝑝p𝑥r𝑘sqq

Importance Sampling: The traditional way of training
a deep learning model has one major drawback, where
it is not able to differentiate samples where it performs
very well, i.e., low loss and those samples where the
performance is poor i.e., high loss [39]. Also, as not all
source samples can provide useful knowledge [39], we
introduce the idea of importance sampling to control
examples which should be given more priority. Impor-
tance sampling [40] is a variance reduction technique
and is done by taking a random sample of a set based
on a probability distribution among the elements of the
group. In our proposed method, we attach weights to the
source training examples based on their similarity to the
target dataset. The samples with more weight will have
a higher chance of being selected. We sample the source
from a probability density over the target data.
UncertaintyQuantification: There are different types
of uncertainties, and these could be present in the data
or model. When the uncertainty is derived from the
model, it is referred to as ”epistemic ormodel uncertainty”
[41]. Epistemic uncertainty captures the ignorance about
the model generated from the collected data and can be
explainedmorewhenmore data is given to themodel [41].



It is the property of the model. When the uncertainty is
related to the data, it is referred to as aleatoric uncertainty
[41]. It captures the uncertainty concerning information
that the data cannot explain. This can be further divided
into two;

• Heteroscedastic uncertainty, which depends on
the data input and is predicted as a model output
[41].

• Homoscedastic uncertainty, which is not input
data dependent but assumes a constant for all
input data and varies between the different tasks
[42].

In this case, we are not interested in the homoscedastic
uncertainty because we are assuming related task be-
tween the source and target. To learn the heteroscedastic
uncertainty, the loss function can be replaced with the
following [41]:

𝐿𝑜𝑠𝑠 “
||𝑦´ ̂𝑦 ||2

2𝜎2 `
1
2 log 𝜎

2 (3)

where the model predicts a mean ̂𝑦 and variance 𝜎2.

Kendall and Gal [41] proposed a loss function to com-
bine both epistemic and aleatoric (heteroscedastic) un-
certainty as follows:

𝐿𝑜𝑠𝑠 “
1
𝐷 ∑𝑖“1 𝑒𝑥𝑝p´ log 𝜎2q||𝑦 ´ ̂𝑦 ||2 `

1
2 log 𝜎

2 (4)

where 𝐷 is the total number of output and 𝜎2 is the
variance.

Our Proposed Approach: To derive our proposed loss
function, which can enhance the data and model trans-
ferability, we combine equation 2 and 3 when incorpo-
rating heteroscedastic uncertainty, and equation 2 and 4
when incorporating both epistemic and heteroscedastic
uncertainty. To determine the similarity of the sample,
we use the method proposed by Kilgarriff [43]. Then,
the Wilcoxon signed-rank test [44] is used to compare
the frequency counts from both datasets to determine
if both datasets have a statistically similar distribution.
To overcome the divergence problem, we use the impor-
tance sampling technique in our training process. The
pseudocode for our proposed method is as follows:

Algorithm 1 Combined Uncertainty Loss Function and
Cost-Weighting (CUCW)
Input:

• Source model : gpxq

• Source Training set Str
• Target Training set Ttr
• Target Validation set Tv
• Target Testing set Tts

Output: Degree of negative transfer (NTD)

1. Estimate similarity for each source sample against ran-
dom 1000 target samples

2. Estimate importance weight with importance sampling
based on the similarity

3. Train a source model 𝑔 using importance weight with a
small target sample as the validation data Tv

4. Compute loss function using Equations 2 and 3 OR
Equations 2 and 4

5. Compute test error 𝜖𝜀p𝜃pS,Tqq on model 𝑔 using target
test set Tts

6. Train a target model 𝑡 with the target data only Ttr
7. Compute test error 𝜖𝜀p𝜃p∅,Tqq on model 𝑡 using target

test set Tts
8. Calculate NTD 𝜖𝜀p𝜃pS,Tqq - 𝜖𝜀p𝜃p∅,Tqq

9. Fine tune model 𝑔 using target training set Ttr and target
validation set Tv to derive a new model 𝑡𝑔

10. Compute test error 𝜖𝜀p𝜃p∅,Tqq on model 𝑡𝑔 using target
test set Tts

11. returnDegree of negative transfer (NTD) andmodel per-
formance

Based on the algorithm above, we can employ a deep
transfer learning using the proposed approach to find an
optimal model with the least degree of negative transfer.
This can be done by following the steps in sequential or-
der. For each step, we can find the best model by training
different hyperparameters in our model.

4. Experiments
All experiments were conducted 10 times as used in the
work of Bennin et al. [45] to reduce the impact of bias,
and the results were averaged across all independent runs.
For our sentiment analysis task, we use the Amazon re-
view dataset. We aim to build an accurate sentiment
analysis model for low-resource domains by learning
from high-resource but related domains. We used the
smaller version of the datasets prepared by Lakkaraju
et al. [46]. These datasets contain 22 domains, as shown
in section 1 above. It is worth noting that some domains
in this dataset are imbalanced, as seen in Fig 1. We ranked
reviews with 1 to 3 stars as negative, while reviews with 4
or 5 stars were ranked as positive. For the pre-processing
steps, we use standard techniques commonly used in
NLP and Amazon sentiment analysis tasks [47, 48] in
the following order; tokenisation, stop word/punctuation
removal, and lemmatisation. Tokenisation involves the
process of separating a sentence into a sequence of words
known as “tokens” [49]. These tokens are identifiable or



Table 1
Ratio of negative to positive sample in the Amazon datasets

Domains Ratio

Apparel 0.98
Automotive 1.00
Baby 0.91
Beauty 0.49
Books 0.89
Camera_&_Photo 0.91
Cell_phones_&_Service 0.58
Computer_&_Video_Games 1.00
Dvd 0.96
Electronics 0.91
Grocery 0.34
Health_&_Personal_Care 0.99
Jewelry_&_Watches 0.29
Kitchen_&_Housewares 0.94
Magazines 0.97
Music 1.02
Office_products 0.72
Outdoor_living 0.34
Software 0.63
Sports_&_Outdoors 0.95
Toy_&_Games 0.91
Video 1.24

separated from each other by a space character. Punc-
tuation and stop words that frequently appear and do
not significantly affect meaning (stop word removal e.g.,
”the”, “is” and “and”) were also removed [49]. Our lemma-
tisation process involves using the context in which the
word is derived from (e.g., studies becomes study). By
lemmatising a word, we reduce its derivationally related
forms into a common root form. By using the root form
of a word, the model will be able to learn any inflectional
form for that given word.

4.1. Experiment Setup
We selected only domains from the Amazon review
datasets where class imbalance was evident. To deter-
mine the domains to select, the negative to positive ratio
is presented in Table 1, where only domains with less
than 0.7 ratio were selected to be used in this experiment.
From Table 1, six domains were selected as shown in
Figure 2 below.

We designed two groups of experiments by selecting
domains where class imbalance is present, as shown in
Figure 2. In the experiment, we excluded the ”Grocery”
domain, as this domain is not related to the other six
domains shown in Figure 2. The first group of domains
consists of datasets from Beauty, Outdoor_living and Jew-
elry_&_Watches, while the second domain group consists
of datasets fromOffice_products, Cell_phones_&_Service

co
un

t

Figure 1: Amazon review dataset

co
un

t

Figure 2: Amazon review dataset showing imbalance domains

and Software. For each experiment, a single domain was
used as the target dataset, while the remaining domains
in that group were used as the source datasets.
Text Similarity Measure: We use theWilcoxon signed-
rank test [44] to compare the frequency counts from both
datasets to determine if both datasets have a statistically
similar distribution. This was done by extracting all
words while retaining the repeat from each sample of our



Table 2
BAUC of fine-tuned Bert uncased model and different baseline methods on Amazon review dataset

Groups Target CUCW
CUCW

No epistemic
CUCW

No Importance Sampling
CUCW

No Cost Weighting PDM MMT DTL

Group 1 Outdoor living 0.956 0.925 0.942 0.806 0.798 0.810 0.779

! Beauty 0.935 0.902 0.921 0.824 0.690 0.745 0.767

! Jwellery & Watches 0.931 0.912 0.928 0.776 0.644 0.763 0.745

Group 2 Cellphones & services 0.976 0.956 0.966 0.875 0.789 0.886 0.819

! Software 0.965 0.949 0.931 0.854 0.776 0.845 0.788

! Office_products 0.957 0.945 0.944 0.818 0.778 0.823 0.799

source training set and ignoring the stop words. From the
target set, we sampled (with replacement) 1000 samples
as done by Madabushi et al. [38]. Then, we use a word
frequency from each of the source training samples and
the sample’s target set to calculate the p-value using the
Wilcoxon signed-rank test.
Model: We used the Bert uncased model for this task.
It consists of a 768-dimension vector, 12 layers of the
transformer block and 110 million parameters. We added
a fully connected layer on top of the BERT self-attention
layers to classify the review. For the parameters, we
adopt a similar hyperparameter as used in the Bert un-
cased model for Amazon sentiment analysis [50]. These
parameters include using the Adam optimiser with var-
ious learning rates and 512 Max Sequence Length with
five epochs. The learning rate was 1e´05. The model
was first build using the source dataset to derive a source
model. Then, this source model was fine-tuned with the
target datasets. The fine-tuning with the target datasets
was done by using a commonly split ratio (30:70) [51].
The training sets of the target data were used to fine-tune
the source model before being tested on the test sets. We
ran 10 experiments to compute the estimated risk by the
different methods and the average was reported.
Evaluationmeasures: All experiments were conducted
10 times as done in the work of Bennin et al. [45] to re-
duce the impact of sampling bias, and the results were
averaged across the independent runs. To evaluate the
prediction accuracy of each modelling approach, the fol-
lowing were computed:

• Balanced accuracy (BAUC): BAUC measures
model performance, taking into account class
imbalances and it also overcomes bias in binary
cases [52]. The balanced accuracy is computed
as the average of the proportion of correct pre-
dictions for each class separately.

• F-measure: This is used for evaluating binary
classification models based on the predictions
made for the positive class [52].

5. Results
Here, we compare our systematic approach against three
different strategies proposed for tackling NT. These
strategies were:

• Predictive distribution matching (PDM) [13].
This is an instance-based weighting approach.
This method works by first measuring the differ-
ing predictive distributions of the target domain
and the related source domains. In this case, a
PDM regularised classifier is used to infer the tar-
get pseudolabeled data, which will help to iden-
tify the relevant source data, so as to correctly
align their predictive distributions [13]. We used
the support vector machines (SVM) variant of the
proposed PDM as used in the sentiment analysis
task in the work of Seah et al. [13].

• Mutual Mean-Teaching (MMT)[19]: This is a fea-
ture transferability approach which uses a soft
loss function based on soft pseudo-labels and is
carried out in two stages. In the first stage, the
Bert uncased model was trained using the source
domain to derive a source model. This source
model is trained to model a feature transforma-
tion function that transforms each input sample
into a feature representation. For this experiment.
the source model is trained with a classification
loss and a triplet loss to separate features belong-
ing to different identity, as used in the original
paper [19]. Next, the source model trained in
stage 1 is optimised using the MMT framework,
which is based on the clustering method. The de-
tails of this approach are explained in the original
paper [19].

• Dual Transfer Learning (DTL) [15]: This ap-
proach enhances feature transferability through
the use of a latent feature. This method simul-
taneously learns the marginal and conditional
distributions, and exploits their duality. For this
experiment, the training was done using the Bert



Table 3
F-measure of fine-tuned Bert uncased model and different baseline methods on Amazon review dataset

Groups Target CUCW
CUCW

No epistemic
CUCW

No Importance Sampling
CUCW

No Cost Weighting PDM MMT DTL

Group 1 Outdoor living 0.945 0.911 0.903 0.800 0.778 0.808 0.756

! Beauty 0.922 0.899 0.909 0.799 0.665 0.716 0.733

! Jwellery & Watches 0.898 0.886 0.886 0.730 0.616 0.742 0.709

Group 2 Cellphones & services 0.965 0.931 0.961 0.832 0.742 0.835 0.799

! Software 0.949 0.919 0.925 0.818 0.754 0.778 0.718

! Office_products 0.949 0.927 0.939 0.832 0.731 0.809 0.817

Table 4
BAUC of none fine-tuned Bert uncased method and different baseline methods on Amazon review dataset

Groups Target CUCW
CUCW

No epistemic
CUCW

No Importance Sampling
CUCW

No Cost Weighting PDM MMT DTL

Group 1 Outdoor living 0.887 0.845 0.864 0.799 0.798 0.810 0.779

! Beauty 0.935 0.902 0.921 0.824 0.690 0.745 0.767

! Jwellery & Watches 0.853 0.821 0.843 0.734 0.644 0.763 0.745

Group 2 Cellphones & services 0.939 0.909 0.920 0.840 0.789 0.886 0.819

! Software 0.915 0.898 0.878 0.819 0.776 0.845 0.788

! Office_products 0.919 0.888 0.865 0.843 0.778 0.823 0.799

uncased model by combining the source and tar-
get training data before being tested on the target
dataset.

In Tables 2 to 3, we report the fine-tuned models’ perfor-
mance (balanced accuracy and F- measure) on the target
test set. In cases where NT has occurred (i.e., the degree
of NT was calculated using Equation 1), we denote the
colour of the accuracy as red. From Table 2, the results
indicate that our proposed approach with fine-tuning,
other components and including both uncertainties (het-
eroscedastic aleatoric and epistemic uncertainty) in the
loss function outperformed the other three models. To
disentangle the contribution of all components in our pro-

posed approach, we report the results by removing each
component in our proposed approach. When epistemic
uncertainty or cost weighting was excluded from the loss
function, we noticed three cases (i.e., outdoor living, cell
phones & service, and office product were used as the
target datasets) where the MMT method outperformed
our approach. A similar outcome was noted in the F-
measure as shown in Table 3. To further disentangle the
contribution of all components in our proposed approach
without fine-tuning the Bert model and to provide a fair
comparison with the three methods we compared against,
we combined the source and target training data to train
our Bert model before testing on the target test data. This

Table 5
F-measure of the none fine-tuned Bert uncased method and different baseline methods on Amazon review dataset

Groups Target CUCW
CUCW

No epistemic
CUCW

No Importance Sampling
CUCW

No Cost Weighting PDM MMT DTL

Group 1 Outdoor living 0.881 0.844 0.829 0.770 0.778 0.808 0.756

! Beauty 0.899 0.865 0.834 0.788 0.665 0.716 0.733

! Jwellery & Watches 0.822 0.808 0.789 0.710 0.616 0.742 0.709

Group 2 Cellphones & services 0.887 0.858 0.887 0.787 0.742 0.835 0.799

! Software 0.878 0.844 0.868 0.819 0.754 0.778 0.718

! Office_products 0.843 0.822 0.829 0.709 0.731 0.809 0.817



was done to remove the benefit of the fine-tuning compo-
nent in our design. The results in Tables 4 to 5 show that,
without the fine-tuning component, we were still able
to improve the performance when all other components
are integrated in our deep transfer learning, but with less
improvement (i.e., noting an improvment of BAUC and
F-measure of 2% to 9% as shown in Table 4 and Table 5).

6. Discussion
In our sentiment analysis experiment (see Table 2 to Ta-
ble 5), our proposed method, which incorporated both
uncertainties, was able to improve the balanced accuracy
of the BERT model from 5% to 14% and F- measure value
from 5% to 10% as compared to using techniques that
are instance [13] or feature transferability based [19, 15].
Although the instance level transferability enhancement
has been used in the deep learning model to prevent NT
[11, 53], they do not handle the target data quality. This
factor is shown to be one of the causes of NT [7]. The
PDM method that we compared against in this paper
tackles the domain divergence issue by using predictive
distribution matching to remove the irrelevant source.
This method still failed to address the target data quality;
hence, we noted a single case of nt in our nlp task result
(when the outdoor living domain was used as the target’s
dataset). Although the MMT method uses a softmax loss
function based on soft pseudo-labels to tackle the tar-
get data quality, it cannot tackle the domain divergence
issue, which may also lead to NT. A single case of NT
(when the outdoor living domain was used as the target’s
dataset) was also noted when using this method. On
the other hand, our proposed method is more robust. It
uses the uncertainty-guided function to tackle the target
and source data quality issue, importance sampling and
cost weighting learning, to tackle the domain divergence
problem. For the fine-tuning process, we use a small tar-
get sample as the validation data in the source model to
improve the transferability of the final model. Our results
show that the final model is improved when we intro-
duce the use of an uncertainty-guided loss function to
guide the training process when utilising the source and
target datasets and incorporate a cost weight to tackle
the problem of imbalanced data. In the work of Grauer
and Pei [22], it was also noted that when model uncer-
tainty is known and distributed evenly, the performance
and reliability of the model are greatly improved. Hence,
this work uses the idea of model and data transferability
enhancement to develop a more robust approach aimed
at preventing negative transfer. The evidence from our
results suggests that we could use a systematic approach
such as what was proposed in this paper to improve the
quality of models in a deep transfer learning setting. Also,
it is worth noting that two of the methods we compared

against (MMT and DTL) in this study also use the Bert
Uncased model, hence, we are able to eliminate the in-
terference of model complexity in the comparison result.
From the ablation study, model fine-tuning improved the
overall performance from 2% to 6% when integrating all
components into our approach.

7. Addressing threats to validity
The experimental dataset was compiled by [46]. We ac-
knowledge threats relating to errors in the review labels.
These threats have been well minimised by experiment-
ing with different projects in the datasets. Also, we con-
cede that there are a few uncontrolled factors that may
have impacted the experimental results in this study. For
instance, there could have been unexpected faults in the
implementation of the approaches we compare against
in this paper [54]. We sought to reduce such threats by
using the source code provided for these methods (e.g.,
PDM, MMT and DTL). While we recognize the threats
above, we anticipate that our study here still contributes
novel findings to transfer-based modelling for recom-
mendation systems in NLP domains relying on latent
sentiment information.

8. Conclusion
In this work, we proposed a systematic approach to over-
coming negative transfer by tackling domain divergence,
taking account of the source and target data quality.
Our approach involves using cost weighting learning,
uncertainty-guided loss function over the target dataset,
and the concept of importance sampling to derive a robust
model. This systematic approach improves the target do-
main’s performance. The results reported in this work
also reveal that when both aleatoric heteroscedastic and
epistemic uncertainty are combined, we can further en-
hance the performance of the target model. We therefore
assert that our systematic approach is a good approach
for overcoming negative transfer and improving target
model performance when performing sentiment analy-
sis in a transfer learning setting. This approach can be
used to build an effective recommendation system when
including the latent sentiment information. A plausible
next step, is to use such an approach to design an effec-
tive recommendation system that takes into account the
latent sentiment information. Although our experiments
showed our approach improves the target model perfor-
mance and prevents NT in sentiment analysis, it is still
important to investigate this approach for other domains.



Acknowledgements
This research was partly supported by an Internal Re-
search fund fromManaaki Whenua — Landcare Research,
NewZealand. Special thanks are given to the Department
of Informatics at Landcare Research for their ongoing
support.

References
[1] P. Cremonesi, A. Tripodi, R. Turrin, Cross-domain

recommender systems, in: 2011 IEEE 11th Inter-
national Conference on Data Mining Workshops,
Ieee, 2011, pp. 496–503.

[2] T. Zang, Y. Zhu, H. Liu, R. Zhang, J. Yu, A sur-
vey on cross-domain recommendation: taxonomies,
methods, and future directions, arXiv preprint
arXiv:2108.03357 (2021).

[3] Y. Wang, H. Yu, G. Wang, Y. Xie, Cross-domain
recommendation based on sentiment analysis and
latent feature mapping, Entropy 22 (2020) 473.

[4] B. Zadrozny, Learning and evaluating classifiers
under sample selection bias, in: Proceedings of the
twenty-first international conference on Machine
learning, 2004, p. 114.

[5] P. Li, A. Tuzhilin, Ddtcdr: Deep dual transfer cross
domain recommendation, in: Proceedings of the
13th International Conference on Web Search and
Data Mining, 2020, pp. 331–339.

[6] S. J. Pan, Q. Yang, A survey on transfer learning,
IEEE Transactions on knowledge and data engineer-
ing 22 (2009) 1345–1359.

[7] W. Zhang, L. Deng, L. Zhang, D. Wu, A survey on
negative transfer, 2020. URL: https://arxiv.org/abs/
2009.00909. doi:10.48550/ARXIV.2009.00909 .

[8] M. Rosenstein, Z. Marx, L. Kaelbling, &amp; diet-
terich, tg (2005). to transfer or not to transfer, in:
NIPS 2005 Workshop on Transfer Learning, ????

[9] Z. Wang, Z. Dai, B. Póczos, J. Carbonell, Charac-
terizing and avoiding negative transfer, in: Pro-
ceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition, 2019, pp.
11293–11302.

[10] O. P. Omondiagbe, S. Licorish, S. G. MacDonell,
Improving transfer learning for cross project defect
prediction, TechRxiv preprint techrxiv.19517029
(2022).

[11] Z. Wang, J. Carbonell, Towards more reliable trans-
fer learning, in: Joint European Conference on
Machine Learning and Knowledge Discovery in
Databases, Springer, 2018, pp. 794–810.

[12] E. Eaton, et al., Selective transfer between learning
tasks using task-based boosting, in: Twenty-Fifth
AAAI Conference on Artificial Intelligence, 2011.

[13] C.-W. Seah, Y.-S. Ong, I. W. Tsang, Combating neg-
ative transfer from predictive distribution differ-
ences, IEEE transactions on cybernetics 43 (2012)
1153–1165.

[14] D. Wu, Pool-based sequential active learning for
regression, IEEE transactions on neural networks
and learning systems 30 (2018) 1348–1359.

[15] M. Long, J. Wang, G. Ding, W. Cheng, X. Zhang,
W. Wang, Dual transfer learning, in: Proceedings
of the 2012 SIAM International Conference on Data
Mining, SIAM, 2012, pp. 540–551.

[16] X. Wang, Y. Jin, M. Long, J. Wang, M. I. Jordan,
Transferable normalization: Towards improving
transferability of deep neural networks, Advances
in neural information processing systems 32 (2019).

[17] A. Madry, A. Makelov, L. Schmidt, D. Tsipras,
A. Vladu, Towards deep learningmodels resistant to
adversarial attacks, arXiv preprint arXiv:1706.06083
(2017).

[18] L. Gui, R. Xu, Q. Lu, J. Du, Y. Zhou, Negative transfer
detection in transductive transfer learning, Interna-
tional Journal of Machine Learning and Cybernetics
9 (2018) 185–197.

[19] Y. Ge, D. Chen, H. Li, Mutual mean-teaching:
Pseudo label refinery for unsupervised domain
adaptation on person re-identification, arXiv
preprint arXiv:2001.01526 (2020).

[20] K. Liang, J. Y. Zhang, O. O. Koyejo, B. Li, Does ad-
versarial transferability indicate knowledge trans-
ferability? (2020).

[21] Z. Deng, L. Zhang, K. Vodrahalli, K. Kawaguchi,
J. Y. Zou, Adversarial training helps transfer learn-
ing via better representations, Advances in Neural
Information Processing Systems 34 (2021).

[22] J. A. Grauer, J. Pei, Minimum-variance control allo-
cation considering parametric model uncertainty,
in: AIAA SCITECH 2022 Forum, 2022, p. 0749.

[23] R. Caruana, D. Silver, J. Baxter, T. Mitchell, L. Pratt,
S. Thrun, Learning to learn: knowledge consolida-
tion and transfer in inductive systems, in: Work-
shop held at NIPS-95, Vail, CO, see http://www.
cs. cmu. edu/afs/user/caruana/pub/transfer. html,
1995.

[24] M. Sugiyama, M. Krauledat, K.-R. Müller, Covari-
ate shift adaptation by importance weighted cross
validation., Journal of Machine Learning Research
8 (2007).

[25] J. Huang, A. Gretton, K. Borgwardt, B. Schölkopf,
A. Smola, Correcting sample selection bias by un-
labeled data, Advances in neural information pro-
cessing systems 19 (2006).

[26] T. Jebara, Multi-task feature and kernel selection
for svms, in: Proceedings of the twenty-first in-
ternational conference on Machine learning, 2004,

https://arxiv.org/abs/2009.00909
https://arxiv.org/abs/2009.00909
http://dx.doi.org/10.48550/ARXIV.2009.00909


p. 55.
[27] S. Uguroglu, J. Carbonell, Feature selection for

transfer learning, in: Joint European Conference
on Machine Learning and Knowledge Discovery in
Databases, Springer, 2011, pp. 430–442.

[28] L. Mihalkova, R. J. Mooney, Transfer learning by
mapping with minimal target data, in: Proceedings
of the AAAI-08 workshop on transfer learning for
complex tasks, 2008.

[29] J. Yosinski, J. Clune, Y. Bengio, H. Lipson, How
transferable are features in deep neural networks?,
Advances in neural information processing systems
27 (2014).

[30] B. Sun, K. Saenko, Deep coral: Correlation align-
ment for deep domain adaptation, in: European
conference on computer vision, Springer, 2016, pp.
443–450.

[31] M. Long, Y. Cao, J. Wang, M. Jordan, Learning trans-
ferable features with deep adaptation networks,
in: International conference on machine learning,
PMLR, 2015, pp. 97–105.

[32] G. K. Dziugaite, D. M. Roy, Z. Ghahramani, Train-
ing generative neural networks via maximum
mean discrepancy optimization, arXiv preprint
arXiv:1505.03906 (2015).

[33] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu,
D. Warde-Farley, S. Ozair, A. Courville, Y. Bengio,
Generative adversarial nets, Advances in neural
information processing systems 27 (2014).

[34] S. Sankaranarayanan, Y. Balaji, C. D. Castillo,
R. Chellappa, Generate to adapt: Aligning domains
using generative adversarial networks, in: Proceed-
ings of the IEEE conference on computer vision and
pattern recognition, 2018, pp. 8503–8512.

[35] W. Y. Wang, S. Singh, J. Li, Deep adversarial learn-
ing for nlp, in: Proceedings of the 2019 Conference
of the North American Chapter of the Association
for Computational Linguistics: Tutorials, 2019, pp.
1–5.

[36] M. Rajesh, J. Gnanasekar, Annoyed realm outlook
taxonomy using twin transfer learning, Interna-
tional Journal of Pure and Applied Mathematics
116 (2017) 549–558.

[37] M. Kukar, I. Kononenko, et al., Cost-sensitive learn-
ing with neural networks., in: ECAI, volume 15,
Citeseer, 1998, pp. 88–94.

[38] H. T. Madabushi, E. Kochkina, M. Castelle, Cost-
sensitive bert for generalisable sentence classi-
fication with imbalanced data, arXiv preprint
arXiv:2003.11563 (2020).

[39] A. Katharopoulos, F. Fleuret, Not all samples are
created equal: Deep learning with importance sam-
pling, in: International conference on machine
learning, PMLR, 2018, pp. 2525–2534.

[40] C. P. Robert, G. Casella, G. Casella, Monte Carlo
statistical methods, volume 2, Springer, 1999.

[41] A. Kendall, Y. Gal, What uncertainties do we need
in bayesian deep learning for computer vision?, Ad-
vances in neural information processing systems
30 (2017).

[42] Q. V. Le, A. J. Smola, S. Canu, Heteroscedastic
gaussian process regression, in: Proceedings of the
22nd international conference on Machine learning,
2005, pp. 489–496.

[43] A. Kilgarriff, Comparing corpora, International
journal of corpus linguistics 6 (2001) 97–133.

[44] F. Wilcoxon, Probability tables for individual com-
parisons by ranking methods, Biometrics 3 (1947)
119–122.

[45] K. E. Bennin, J. Keung, P. Phannachitta, A. Monden,
S. Mensah, Mahakil: Diversity based oversampling
approach to alleviate the class imbalance issue in
software defect prediction, IEEE Transactions on
Software Engineering 44 (2017) 534–550.

[46] H. Lakkaraju, J. McAuley, J. Leskovec, What’s in a
name? understanding the interplay between titles,
content, and communities in social media, in: Pro-
ceedings of the International AAAI Conference on
Web and Social Media, volume 7, 2013, pp. 311–320.

[47] A. S. AlQahtani, Product sentiment analysis for
amazon reviews, International Journal of Computer
Science & Information Technology (IJCSIT) Vol 13
(2021).

[48] A. F. Anees, A. Shaikh, A. Shaikh, S. Shaikh, Sur-
vey paper on sentiment analysis: Techniques and
challenges, EasyChair2516-2314 (2020).

[49] D. D. Palmer, Tokenisation and sentence segmen-
tation, Handbook of natural language processing
(2000) 11–35.

[50] M. Geetha, D. K. Renuka, Improving the perfor-
mance of aspect based sentiment analysis using
fine-tuned bert base uncased model, International
Journal of Intelligent Networks 2 (2021) 64–69.

[51] I. H.Witten, E. Frank, M. A. Hall, C. J. Pal, Data Min-
ing: Practical Machine Learning Tools and Tech-
niques, Morgan Kaufmann Publishers, San Fran-
cisco, 2016. doi:10.1016/c2009- 0- 19715- 5 .

[52] T. Menzies, J. Greenwald, A. Frank, Data min-
ing static code attributes to learn defect predictors,
IEEE transactions on software engineering 33 (2006)
2–13.

[53] Y. Xu, H. Yu, Y. Yan, Y. Liu, et al., Multi-component
transfer metric learning for handling unrelated
source domain samples, Knowledge-Based Systems
203 (2020) 106132.

[54] E. A. Felix, S. P. Lee, Predicting the number of
defects in a new software version, PloS one 15
(2020) e0229131.

http://dx.doi.org/10.1016/c2009-0-19715-5

	1 Introduction
	2 Related Work
	3 Method
	3.1 Negative Transfer
	3.2 Proposed Methods

	4 Experiments
	4.1 Experiment Setup

	5 Results
	6 Discussion
	7 Addressing threats to validity
	8 Conclusion

